Skip to main content
Log in

Lead isotope and trace element composition of urban soils in Mongolia

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Lead (Pb) pollution in and around Ulaanbaatar is of national concern, given that the Mongolian capital is home to nearly half of the country’s entire population. By comparison, Mongolian countryside is a pristine environment because of its sparse population and low industrial activity. The concentration of Pb in urban soils (average of 39.1 mg kg–1) was twice the values found (average 18.6 mg kg–1) in background territories (i.e., Mongolian rural sites). Furthermore, Pb contamination was examined by using Pb stable isotopic composition, and covariance of Pb isotopic ratios showed two groups between rural and urban soils as pristine and disturbed sites. The 206Pb/207Pb ratio, the most prominent fingerprint for Pb pollution, was 1.163–1.185 for the urban whereas values for rural soils (1.186–1.207) were analogue to the regional Pb isotopic signatures. Local coal sources and their combustion products, one of the potential Pb pollution sources in Ulaanbaatar, have significant radiogenic properties in terms of Pb isotopic composition and revealed an average of 1.25 for 206Pb/207Pb and 19.551 for 206Pb/204Pb ratios. Thus, contributions from coal firing activity to Pb pollution lower than it was assumed, and smaller range of these values measured in urban soils may be attributed to the mixing of less radiogenic Pb as a constituent of the leaded gasolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Batjargal, E. Otgonjargal, K. Baek, and J.-S. Yang, “Assessment of metals contamination of soils in Ulaanbaatar, Mongolia,” J Hazard. Mater. 184, 872–876 (2010).

    Article  Google Scholar 

  2. L. Batnum and S. Enhmaa, Ulaanbaatar Hotiin Agaar Bohirduulah eh Uusveriin Uzleg, Toollogo Yavuulsan Tuhai Ajliih Tailan (Ulaanbaatar, 2008), pp. 40–41.

    Google Scholar 

  3. P. E. Biscaye, F. E. Grousset, M. Revel, S. van der Gaast, G. A. Zielinski, A. Vaars, and G. Kukla, “Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland,” J. Geophysical Res. 102, 26765–26780 (1997).

    Article  Google Scholar 

  4. A. Bollhöfer and K. J. R. Rosman, “Isotopic source signatures for atmospheric lead: the Northern Hemisphere,” Geochim. Cosmochim. Acta 65, 1727–1740 (2001).

    Article  Google Scholar 

  5. H. J. M. Bowen, The Environmental Chemistry of the Elements (Academic, London, 1979).

    Google Scholar 

  6. J. Chen, M. Tan, Y. Li, Y. Zhang, W. Lu, Y. Tong, G. Zhang, and Y. Li, “A lead isotopic record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline,” Atmos. Environ. 39, 1245–1253 (2005).

    Article  Google Scholar 

  7. S. Cheng, “Heavy metal pollution in China: origin, pattern, and control,” Environ. Sci. Pollut. Res. 10, 192–198 (2003).

    Article  Google Scholar 

  8. A. D. Clarke, Y. Shinozuka, V. N. Kapustin, S. Howell, B. Huebert, S. Doherty, T. Anderson, D. Covert, J. Anderson, X. Hua, K. G. Moore, C. McNaughton, G. Carmichael, and R. Weber, “Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties,” J. Geophys. Res.: Atmos. 109, 15S09 (2004). doi 10.1029/2003JD004378

    Article  Google Scholar 

  9. F. J. Doucet and J. Carignan, “Atmospheric isotopic composition and trace metal concentration as revealed by epiphytic lichens,” Atmos. Environ. 35, 3681–3690 (2001).

    Article  Google Scholar 

  10. I. P. Gerasimov and N. A. Nogina, The Soil Cover and Soil of Mongolia (Nauka, Moscow, 1984), pp. 109–112.

    Google Scholar 

  11. K.-S. Ho, Y. Liu, J.-C. Chen, and H.-J. Yang, “Elemental and Sr-Nd-Pb isotopic compositions of late Cenozoic Abaga basalts, Inner Mongolia: implications for petrogenesis and mantle process,” Geochem. J. 42, 339–357 (2008).

    Article  Google Scholar 

  12. N. S. Kasimov, M. Yu. Lychagin, A. K. Evdokimova, D. L. Golovanov, and Yu. I. Pikovskii, “Ulaanbaatar, Mongolia (heat and power engineering): intermountain depression,” in Ecogeochemistry of Urban Landscapes, Ed. by N. S. Kasimov (Moscow State University, Moscow, 1995), pp. 231–248.

    Google Scholar 

  13. N. S. Kasimov, N. E. Kosheleva, O. I. Sorokina, S. N. Bazha, P. D. Gunin, and S. Enkh-Amgalan, “Ecological-geochemical state of soils in Ulaanbaatar (Mongolia),” Eurasian Soil Sci. 44 (7), 709–722 (2011). doi 10.1134/S106422931107009X

    Article  Google Scholar 

  14. M. Komárek, V. Ettler, V. Chrastny, and M. Mihaljevic, “Lead isotopes in environmental sciences: a review,” Environ. Int. 34, 562–577 (2008).

    Article  Google Scholar 

  15. V. I. Kovalenko, Rare Metal Metallogeny of People’s Republic of Mongolia Based on Potential Ore Resources on Magma Minerals. Ore Deposits of Magma Associations (Nauka, Moscow, 1988), pp. 114–159.

    Google Scholar 

  16. D. V. Ladonin and O. V. Plyaskina, “Isotopic composition of lead in soils and street dust in the southeastern administrative district of Moscow,” Eurasian Soil Sci. 42 (1), 93–104 (2009). doi 10.1134/S1064229309010128

    Article  Google Scholar 

  17. F.-L. Li, C.-Q. Liu, Y.-G. Yang, X.-Y. Bi, T.-Z. Liu, and Z.-Q. Zhao, “Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach,” Sci. Total Environ. 431, 339–347 (2012).

    Article  Google Scholar 

  18. L. Long, “Lead isotopes,” in Encyclopedia of Geochemistry, Ed. by C. P. Marshall and R. W. Fairbridge (Kluwer, Amsterdam, 1999).

    Google Scholar 

  19. A. Markwitz, B. Barry, and D. Shagjjamba, “PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia,” Nucl. Instrum. Methods Phys. Res. 266, 4010–4019 (2008).

    Article  Google Scholar 

  20. Y. Meng, G. Gong, Z. Wu, Z. Yin, Y. Xie, and S. Liu, “Fabrication and microstructure investigation of ultrahigh-strength porcelain insulator,” J. Eur. Ceram. Soc. 32, 3043–3049 (2012).

    Article  Google Scholar 

  21. MNCSM, MN 11047:2007: Soil Pollutants Standard of Mongolia (Mongolian National Center of Standardization and Metrology, Ulaanbaatar, Mongolia, 2007).

  22. H. Mukai, A. Tanaka, T. Fujii, Y. Zeng, and Y. Hong, “Regional characteristic of sulfur and lead at several Chinese urban sites,” Environ. Sci. Technol. 35, 1064–1071 (2001).

    Article  Google Scholar 

  23. H. Mukai, T. Machida, A. Tanaka, Y. P. Vera, and M. Uematsu, “Lead isotope ratios in the urban air of eastern and central Russia,” Atmos. Environ. 35, 2783–2793 (2001).

    Article  Google Scholar 

  24. V. V. Nikonov, N. V. Lukina, and M. V. Frontasyeva, “Trace elements in Al-Fe humus podzolic soils subjected to aerial pollution from the apatite-nepheline production industry,” Eurasian Soil Sci. 32 (12), 1331–1339 (1999).

    Google Scholar 

  25. N. A. Onischuk, T. V. Khodzher, and E. P. Chebykin, “Chipanina lead and its isotopic ratios in atmospheric precipitation in the Baikal region and Primorski krai,” Geogr. Nat. Resour. 30, 345–349 (2009).

    Article  Google Scholar 

  26. T. V. Pampura, A. Probst, D. V. Ladonin, and V. A. Demkin, “Lead content and isotopic composition in submound and recent soils of the Volga Upland,” Eurasian Soil Sci. 46 (11), 1059–1075 (2013). doi 10.1134/S1064229313090020

    Article  Google Scholar 

  27. M. Satoshi, N. Kazuki, D. Gunchin, and H. S. Soey, “Mercury content in electrum from artisanal mining site of Mongolia,” Nucl. Instrum. Methods Phys. Res., Sect. B 249, 556–560 (2006).

    Article  Google Scholar 

  28. B. R. T. Simoneit, M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H. J. Lim, B. J. Turpin, and Y. Komazaki, “Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign,” J. Geophys. Res.: Atmos. 109, 19S10 (2004). doi 10.1029/2004JD004598

    Google Scholar 

  29. D. S. Soper, Analysis of Variance (ANOVA) Calculator, 2015. http://wwwdanielsopercom/statcalc

    Google Scholar 

  30. O. I. Sorokina and S. Enkh-Amgalan, “Lead in the landscapes of Ulaanbaatar city (Mongolia),” Arid Ecosyst. 2 (1), 61–67 (2012).

    Article  Google Scholar 

  31. Sh. Tserenpil, O. D. Maslov, N. Norov, C.-Q. Liu, M. F. Fillipov, B. K. G. Theng, and A. G. Belov, “Chemical and mineralogical composition of the Mongolian rural soils and their uranium sorption behavior,” J. Environ. Radioact. 118, 105–112 (2013).

    Article  Google Scholar 

  32. UNEP, Target 2008: Global Elimination of Leaded Petrol. A Report of the Partnership for Clean Fuels and Vehicles (PCFV) United Nations Environment Program (Nairobi, Kenya, 2008).

  33. A. P. Vinogradov, The Geochemistry of Rare and Dispersed Chemical Elements in Soil (Consultants Bureau, New York, 1959).

    Google Scholar 

  34. F. Wu, H. S. S. Hang, Q. Sun, and I. S. H. Sai, “Provenance of Chinese loess: evidence from stable lead isotope,” Terr., Atmos. Ocean. Sci. 22, 305–314 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Tserenpil.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tserenpil, S., Sapkota, A., Liu, C.Q. et al. Lead isotope and trace element composition of urban soils in Mongolia. Eurasian Soil Sc. 49, 879–889 (2016). https://doi.org/10.1134/S1064229316080147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316080147

Keywords

Navigation