Skip to main content
Log in

Taking into account the universal dependence of the viscosity of a boundary lubricant on temperature and strain rate to describe stop-start experiments

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The tribological system consisting of two blocks with atomically smooth surfaces separated by a boundary lubricant layer is considered. A spring the free end of which is driven is attached to one of the blocks. A thermodynamic model is used to study the influence of the universal relationship between the viscosity of a non-Newtonian lubricant and temperature and strain rate on friction modes. The melting and solidification of the lubricant layer are taken to be second-order phase transformations. The specific features of widely used stop-start experiments, where a system stops for a certain time and then resumes its motion, are analyzed. The influence of the temperature, the shear velocity, and the external load on the behavior of the system is investigated. The conditions of transitions between the fluid (sliding), stick-slip, and dry friction modes are determined for the lubricants consisting of linear alkanes of various lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. J. Persson, Sliding Friction: Physical Principles and Applications (Springer, 2000).

    Book  Google Scholar 

  2. V. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications (Springer, Berlin, 2010).

    Book  Google Scholar 

  3. J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).

    Article  ADS  Google Scholar 

  4. H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).

    Article  Google Scholar 

  5. A. E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).

    Article  ADS  Google Scholar 

  6. V. L. Popov, Tech. Phys. 46, 605 (2001).

    Article  Google Scholar 

  7. A. D. Berman, W. A. Ducker, and J. N. Israelachvili, Langmuir 12, 4559 (1996).

    Article  Google Scholar 

  8. C.-R. Yang, Y.-C. Chiou, and R.-T. Lee, Tribol. Int. 32, 443 (1999).

    Article  Google Scholar 

  9. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J. Güntherodt, Phys. Rev. Lett. 84, 1172 (2000).

    Article  ADS  Google Scholar 

  10. X. Banquy, D. D. Lowrey, N. Belman, Y. Min, G. Mordukhovich, and J. N. Israelachvili, Tribol. Lett. 43, 185 (2011).

    Article  Google Scholar 

  11. I. M. Sivebaek, V. N. Samoilov, and B. N. J. Persson, Langmuir 26, 8721 (2010).

    Article  Google Scholar 

  12. M. Aichele and M. H. Müser, Phys. Rev. E 68, 016125 (2003).

    Article  ADS  Google Scholar 

  13. V. L. Popov, Solid State Commun. 115, 369 (2000).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980), Part 1.

    Google Scholar 

  15. I. A. Lyashenko, Tech. Phys. 57, 17 (2012).

    Article  Google Scholar 

  16. I. A. Lyashenko, Tech. Phys. 56, 701 (2011).

    Article  Google Scholar 

  17. I. A. Lyashenko and A. M. Zaskoka, Ukr. J. Phys. 58, 91 (2013).

    Google Scholar 

  18. I. A. Lyashenko and A. M. Zaskoka, J. Phys. Stud. 17, 1002 (2013).

    Google Scholar 

  19. I. A. Lyashenko, A. V. Khomenko, and A. M. Zaskoka, Tribol. Trans. 56, 1019 (2013).

    Article  Google Scholar 

  20. I. A. Lyashenko, Tech. Phys. 58, 1016 (2013).

    Article  Google Scholar 

  21. A. M. Zaskoka and I. A. Lyashenko, Fiz. Mezomekh. 17(2), 93 (2014).

    Google Scholar 

  22. I. M. Sivebaek, V. N. Samoilov, and B. N. J. Persson, Phys. Rev. Lett. 108, 036102 (2012).

    Article  ADS  Google Scholar 

  23. S. Yamada, Langmuir 21, 8724 (2005).

    Article  Google Scholar 

  24. B. N. J. Persson, Surf. Sci. Rep. 33(3), 83 (1999).

    Article  ADS  Google Scholar 

  25. V. L. Popov, Tech. Phys. Lett. 25, 815 (1999).

    Article  ADS  Google Scholar 

  26. A. D. Pogrebnyak, S. N. Bratushka, V. M. Beresnev, and N. Levintant-Zayonts, Russ. Chem. Rev. 82, 1135 (2013).

    Article  ADS  Google Scholar 

  27. G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996).

    Article  Google Scholar 

  28. A. V. Khomenko, I. A. Lyashenko, Fluct. Noise Lett. 7, L111 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lyashenko.

Additional information

Original Russian Text © I.A. Lyashenko, A.M. Zaskoka, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 7, pp. 69–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashenko, I.A., Zaskoka, A.M. Taking into account the universal dependence of the viscosity of a boundary lubricant on temperature and strain rate to describe stop-start experiments. Tech. Phys. 60, 1014–1020 (2015). https://doi.org/10.1134/S1063784215070178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215070178

Keywords

Navigation