Skip to main content
Log in

Influence of a plasma jet on different types of tungsten

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of a plasma producing nonstationary thermal loads akin to edge-localized modes in a tokamak on different types of tungsten is investigated. Tungsten is irradiated by a jet of a hydrogen plasma generated in a plasma gun. The plasma density and velocity are on the order of 1022 m−3 and 100–200 km/s, respectively, and the irradiation time is 10 μs. Two plasma flux densities, 0.70 and 0.25 MJ/m2, are used. Structural modifications in irradiated single-crystal and hot-rolled tungsten samples, as well as in V-MP and ITER_D_2EDZJ4 tungsten powders, are examined. It is found that the plasma generates a regular crack network with a period of about 1 mm on the surface of the single-crystal, hot-rolled, and V-MP powder samples, while the surface of the ITER_D_2EDZJ4 powder is more cracking-resistant. The depth of the molten layer equals 1–3 μm, and the extension of intense thermal action is 15–20 μm. The material acquires a distinct regular structure with a typical grain size of less than 1 μm. X-ray diffraction analysis shows that irradiation changes the crystal lattice parameters because of the melting and crystallization of the surface layer. The examination of the V_MP tungsten powder after cyclic irradiation by a plasma with different energy densities shows that high-energy-density irradiation causes the most significant surface damage, whereas low-energy-density irradiation generates defects that are small in size even if the number of cycles is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Matthews, et al., Phys. Scr. 138, 14030 (2009).

    Article  Google Scholar 

  2. G. F. Matthews, et al., J. Nucl. Mater. 390–391, 934 (2009).

    Article  Google Scholar 

  3. O. Gruber, et al., Nucl. Fusion 49, 115014 (2009).

    Article  ADS  Google Scholar 

  4. K. Sugiyama, et al., Nucl. Fusion 50, 35001 (2010).

    Article  Google Scholar 

  5. A. Shoshin, et al., Fusion Sci. Technol. 59, 57 (2011).

    Google Scholar 

  6. T. Hirai, et al., JUDITH. http://www-pub.iaea.org/MTCD/Meetings/PDFplus/fusion-20-preprints/FT_P1-20.pdf

  7. G. De Temmerman, et al., Nucl. Fusion 51 (2011).

  8. I. E. Garkusha, I. Landman, J. Linke, V. A. Makhlaj, A. V. Medvedev, S. V. Malykhin, S. Peschanyi, G. Pintsuk, A. T. Pugachev, and V. I. Tereshin, J. Nucl. Mater. 415, S65 (2011).

    Article  ADS  Google Scholar 

  9. V. M. Safronov, et al., Probl. At. Sci. Technol., Ser.: Plasma Phys. (16), No. 6, 51 (2010).

    Google Scholar 

  10. R. A. Pitts, “ITER divertor strategies: physics basis”, in Proceedings of the Strategy Workshop, Cadarache, 2011.

  11. A. V. Voronin, et al., Nukleonika 53, 103 (2008).

    Google Scholar 

  12. A. V. Voronin, V. K. Gusev, Ya. A. Gerasimenko, and Yu. V. Sud’enkov, Tech. Phys. 58, 1122 (2013).

    Article  Google Scholar 

  13. A. V. Voronin, A. V. Ankudinov, V. K. Gusev, Ya. A. Gerasimenko, A. N. Demina, A. N. Novokhatsky, Yu. V. Petrov, N. V. Sakharov, and Yu. V. Sudenkov, in Proceedings of the 39th European Physical Society Conference on Plasma Physics, Stockholm, Sweden, 2012, P4.080. http://ocs.ciemat.es/epsicpp2012pap/pdf/P4.080.pdf

  14. E. V. Demina, V. A. Gribkov, V. N. Pimenov, S. A. Maslyaev, M. D. Prusakova, V. Shirokova, T. Laas, and Yu. Ugaste, Fiz. Khim. Obrab. Mater., No. 3, 15 (2013).

    Google Scholar 

  15. E. M. Savitskii, K. B. Povarova, and P. V. Makarov, Physical Metallurgy of Tungsten (Metallurgiya, Moscow, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voronin.

Additional information

Original Russian Text © A.V. Ankudinov, A.V. Voronin, V.K. Gusev, Ya.A. Gerasimenko, E.V. Demina, M.D. Prusakova, Yu.V. Sud’enkov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 3, pp. 36–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankudinov, A.V., Voronin, A.V., Gusev, V.K. et al. Influence of a plasma jet on different types of tungsten. Tech. Phys. 59, 346–352 (2014). https://doi.org/10.1134/S1063784214030025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214030025

Keywords

Navigation