Skip to main content
Log in

Strength and microplasticity of biocarbons prepared by carbonization in the presence of a catalyst

  • Mechanical Properties, Physics Of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The microdeformation has been investigated under uniaxial compression of beech-derived biocarbons partially graphitized during carbonization in the presence of a Ni- or Fe-containing catalyst. The strength and ultimate fracture strain have been determined at different temperatures of carbonization of the samples in the absence or in the presence of a catalyst. It has been shown using high-precision interferometry that the deformation of biocarbon samples under uniaxial loading occurs through jumps (in magnitude and rate of deformation) with axial displacements in the nanometer and micrometer ranges. The use of a catalyst leads to a decrease in the size of nanometer-scale jumps and in the number of micrometer-scale jumps. The standard deviations of the strain rate on loading steps from the smooth average dependence of the strain rate on the displacement have been calculated for micrometer-scale jumps. A similar characteristic for nanometer- scale jumps has been determined from the distortion of the shape of beats in the primary interferogram. It has been shown that the variation in the standard deviation of the strain rate with a change in the carbonization temperature is similar to the corresponding dependence of the ultimate fracture strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Wang, L. Zhang, and J. J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  2. C. Peng, X. B. Yan, R. T. Wang, J. W. Lang, Y. J. Ou, and Q. J. Xue, Acta Electrochim. 87, 401 (2013).

    Article  Google Scholar 

  3. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).

    Article  Google Scholar 

  4. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  5. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).

    Article  ADS  Google Scholar 

  6. A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).

    Article  Google Scholar 

  7. M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).

    Article  ADS  Google Scholar 

  8. M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).

    Article  Google Scholar 

  9. A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas- Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).

    Article  ADS  Google Scholar 

  10. V. V. Shpeizman, N. N. Peschanskaya, T. S. Orlova, and B. I. Smirnov, Phys. Solid State 51 (12), 2458 (2009).

    Article  Google Scholar 

  11. V. V. Shpeizman, T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 56 (3), 538 (2014).

    Article  ADS  Google Scholar 

  12. V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez- Pardo, and J. Ramirez-Rico, Mater. Phys. Mech. 21, 200 (2014).

    Google Scholar 

  13. N. N. Peschanskaya, P. N. Yakushev, and V. A. Stepanov, Sov. Phys. Solid State 26 (4), 729 (1984).

    Google Scholar 

  14. N. N. Peschanskaya, V. V. Shpeizman, A. B. Sinani, and B. I. Smirnov, Phys. Solid State 46 (11), 2058 (2004).

    Article  ADS  Google Scholar 

  15. V. V. Shpeizman and N. N. Peschanskaya, Phys. Solid State 51 (6), 1149 (2009).

    Article  ADS  Google Scholar 

  16. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 55 (9), 1884 (2013).

    Article  ADS  Google Scholar 

  17. T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).

    Article  ADS  Google Scholar 

  18. A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano- Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 7688 (2014).

    Article  ADS  Google Scholar 

  19. A. Gutierrez-Pardo, Tesis Doctoral (Universidad de Sevilla, Sevilla, Spain), ES41080.

  20. J. B. Condon, Surface Area and Porosity Determinations by Physisorption, Chap. 1: An Overview of Physisorption (Elsevier, Amsterdam, 2006), p. 1.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Shpeizman or T. S. Orlova.

Additional information

Original Russian Text © V.V. Shpeizman, T.S. Orlova, B.I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 4, pp. 685–691.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpeizman, V.V., Orlova, T.S., Smirnov, B.I. et al. Strength and microplasticity of biocarbons prepared by carbonization in the presence of a catalyst. Phys. Solid State 58, 703–710 (2016). https://doi.org/10.1134/S1063783416040223

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416040223

Keywords

Navigation