Skip to main content
Log in

Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The microstructural characteristics and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement δ) of biocarbon matrices prepared by beech wood carbonization at temperatures T carb = 850–1600°C in the presence of a nickel-containing catalyst have been studied. Using X-ray diffraction and electron microscopy, it has been shown that the use of a nickel catalyst during carbonization results in a partial graphitization of biocarbons at T carb ≥ 1000°C: the graphite phase is formed as 50- to 100-nm globules at T carb = 1000°C and as 0.5- to 3.0-μm globules at T carb = 1600°C. It has been found that the measured dependences E(T carb) and δ(T carb) contain three characteristic ranges of variations in the Young’s modulus and logarithmic decrement with a change in the carbonization temperature: E increases and δ decreases in the ranges T carb < 1000°C and T carb > 1300°C; in the range 1000 < T carb < 1300°C, E sharply decreases and δ increases. The observed behavior of E(T carb) and δ(T carb) for biocarbons carbonized in the presence of nickel correlates with the evolution of their microstructure. The largest values of E are obtained for samples with T carb = 1000 and 1600°C. However, the samples with T carb = 1600°C exhibit a higher susceptibility to microplasticity due to the presence of a globular graphite phase that is significantly larger in size and total volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Byrne and D. C. Nagle, Carbon 35(2), 267 (1997).

    Article  Google Scholar 

  2. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  3. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Domínguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1(1), 56 (2004).

    Article  Google Scholar 

  4. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).

    Article  Google Scholar 

  5. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  6. M. T. Johnson and K. T. Faber, J. Mater. Res. 26(1), 18 (2011).

    Article  ADS  Google Scholar 

  7. M. T. Johnson, A. S. Childers, J. Ramírez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).

    Article  Google Scholar 

  8. A. Gutiérrez-Pardo, J. Ramírez-Rico, A. R. de Arellano-López, and J. Martínez-Fernández, J. Mater. Sci. 49(22), 7688 (2014).

    Article  ADS  Google Scholar 

  9. H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6(3), 233 (1999).

    Article  Google Scholar 

  10. A. Oya and H. Marsh, J. Mater. Sci. 17(2), 309 (1982).

    Article  ADS  Google Scholar 

  11. R. Sinclair, T. Itoh, and R. Chin, Microsc. Microanal. 8(4), 288 (2002).

    Article  ADS  Google Scholar 

  12. M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, and A. B. Fuertes, J. Phys. Chem. C 111(27), 9749 (2007).

    Article  Google Scholar 

  13. F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm, Carbon 13(2), 111 (1975).

    Article  Google Scholar 

  14. C. Yokokawa, K. Hosokawa, and Y. Takegami, Carbon 5(5), 475 (1967).

    Article  Google Scholar 

  15. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55(9), 1884 (2013).

    Article  ADS  Google Scholar 

  16. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernandez, Phys. Solid State 53(2), 276 (2011).

    Article  ADS  Google Scholar 

  18. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).

    Article  ADS  Google Scholar 

  19. I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Muha, Phys. Solid State 53(11), 2244 (2011).

    Article  ADS  Google Scholar 

  20. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Phys. Solid State 53(11), 2398 (2011).

    Article  ADS  Google Scholar 

  21. N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56(11), 2348 (2014).

    Article  ADS  Google Scholar 

  22. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(12), 2463 (2009).

    Article  Google Scholar 

  23. B. I. Smirnov, Yu. A. Burenkov, B. K. Kardashev, D. Singh, K. C. Goretta, and A. R. de Arellano-Lopez, Phys. Solid State 43(11), 2094 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Additional information

Original Russian Text © T.S. Orlova, B.K. Kardashev, B.I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, J. Martinez-Fernandez, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 3, pp. 571–577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, T.S., Kardashev, B.K., Smirnov, B.I. et al. Microstructure, elastic and inelastic properties of partially graphitized biomorphic carbons. Phys. Solid State 57, 586–591 (2015). https://doi.org/10.1134/S106378341503018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341503018X

Keywords

Navigation