Skip to main content
Log in

Heat capacity of Bio-SiC and SiC/Si ecoceramics prepared from white eucalyptus, beech, and sapele tree wood

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on measurement of the heat capacity at constant pressure C p of silicon bio-carbide prepared within the 5–300 K temperature interval from beech tree wood (bio-SiC(BE)), and within 80–300 K, from tree wood of sapele (bio-SiC(SA)), as well as SiC/Si ecoceramics of beech, sapele, and white eucalyptus wood. It has been shown that in bio-SiC(BE) the measured heat capacity contains a significant contribution of surface heat capacity, whose magnitude decreases with increasing temperature. Of the ecoceramics, only SiC/Si(SA) characterized by a high enough porosity has revealed a small contribution to the heat capacity coming from its surface component. The experimental results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sieber, C. Hoffman, A. Kaindl, and P. Greil, Adv. Eng. Mater. 2, 105 (2000).

    Article  Google Scholar 

  2. H. Sieber, Mater. Sci. Eng., A 412, 43 (2005).

    Article  Google Scholar 

  3. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzales, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).

    Article  Google Scholar 

  4. C. Zollifrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  5. C. E. Byrne and D. C. Nagle, US Patent No. 6051096 (1996); C. E. Byrne and D. C. Nagle, US Patent No. 6 124 028 (1998).

  6. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998); P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1975 (1998).

    Article  Google Scholar 

  7. M. Singh, Ceram. Sci. Eng. Proc. 21, 39 (2000).

    Article  Google Scholar 

  8. C. Zollifrank and H. Sieber, J. Am. Ceram. Soc. 88, 51 (2005).

    Article  Google Scholar 

  9. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, R. Cabezas-Rodriguez, and J. Ramirez-Rico, Phys. Solid State 54(8), 1732 (2012).

    Article  ADS  Google Scholar 

  10. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 54(10), 2132 (2012).

    Article  ADS  Google Scholar 

  11. I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, J. Mucha, A. Jezowski, J. RamiresRico, and J. Martinez-Fernandez, Phys. Solid State 55 (2013) (in press).

  12. I. A. Smirnov, B. I. Smirnov, A. I. Krivchikov, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Phys. Solid State 49(10), 1835 (2007).

    Article  ADS  Google Scholar 

  13. I. A. Smirnov, B. I. Smirnov, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, A. I. Krivchikov, G. A. Zviagina, and K. R. Zhekov, Phys. Solid State 49(10), 1839 (2007).

    Article  ADS  Google Scholar 

  14. K. E. Pappacena, S. P. Gentry, T. E. Wilkes, M. T. Johnson, S. Xie, A. David, and K. T. Faber, J. Eur. Ceram. Soc. 29, 3069 (2009).

    Article  Google Scholar 

  15. F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Sevilla, Spain, 2004).

  16. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  17. K. E. Pappacena, K. T. Faber, H. Wang, and W. D. Porter, J. Am. Ceram. Soc. 90, 2855 (2007).

    Article  Google Scholar 

  18. D. Wlosewicz, T. Plackowski, and K. Rogalski, Cryogenics 32, 265 (1992).

    Article  Google Scholar 

  19. A. I. Krivchikov, B. Ya. Gorodilov, and A. Czopnik, in Proceedings of the International Seminar on Low Temperature Thermometry and Dynamic Temperature Measurement, Wroclaw, Poland, September 23–25, 1997, p. V7.

  20. V. I. Koshchenko, A. F. Demidenko, N. K. Prokof’eva, V. E. Yachmenov, and A. F. Radchenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 1208 (1974).

    Google Scholar 

  21. A. Zywietz, K. Karch, and F. Bechstedt, Phys. Rev. B: Condens. Matter 54, 1791 (1996).

    Article  ADS  Google Scholar 

  22. R. Rössler, Phys. Status Solidi B 245, 1133 (2008).

    Article  ADS  Google Scholar 

  23. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 197.

    Google Scholar 

  24. Silicon Carbide: Proceedings of the International Conference on Silicon Carbide, University Park, Pensilvania, October 20–23, 1968, Ed. by H. Henisch and R. Roy (Pergamon, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  25. R. Syratton, Philos. Mag. 44, 519 (1953).

    Google Scholar 

  26. M. Dupuis, R. Mazo, and L. Onsager, J. Chem. Phys. 33, 1452 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. A. Maradudin and R. F. Wallis, Phys. Rev. 148, 945 (1966).

    Article  ADS  Google Scholar 

  28. J. J. Burton, J. Chem. Phys. 52, 345 (1970).

    Article  ADS  Google Scholar 

  29. V. Navotny and P. P. M. Meineke, Phys. Rev. B: Solid State 8, 4186 (1973).

    Article  ADS  Google Scholar 

  30. V. N. Bogomolov, L. S. Parfen’eva, I. A. Smirnov, H. Misiorek, A. Jezowski, A. I. Krivchikov, and B. I. Verkin, Phys. Solid State 43(1), 190 (2001).

    Google Scholar 

  31. T. Sleator, A. Bernasconi, D. Possalt, J. K. Kjems, and H. R. Ott, Phys. Rev. Lett. 66, 1070 (1991).

    Article  ADS  Google Scholar 

  32. I. L. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys.-Usp. 24(4), 295 (1981).

    Google Scholar 

  33. J. H. Barkman, R. L. Anderson, and T. E. Bracket, J. Chem. Phys. 42, 1112 (1965).

    Article  ADS  Google Scholar 

  34. G. H. Comsa, D. Heitkamp, and H. Rade, Solidi State Commun. 24, 547 (1977).

    Article  ADS  Google Scholar 

  35. J. Kovacik, S. Emmer, and J. Bielek, Kovove Mater. 42, 365 (2004).

    Google Scholar 

  36. M. Presas, J. Y. Pastor, J. Llorca, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Scr. Mater. 53, 1175 (2005).

    Article  Google Scholar 

  37. Physico-Chemical Properties of Semiconductor Substances: A Handbook (Nauka, Moscow, 1979) [in Russian].

  38. L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures: A Handbook (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Smirnov.

Additional information

Original Russian Text © I.A. Smirnov, B.I. Smirnov, T.S. Orlova, D. Wlosewicz, A. Hackemer, H. Misiorek, J. Mucha, A. Jezowski, J. Ramirez-Rico, J. Martinez-Fernandez, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 2, pp. 409–414.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, I.A., Smirnov, B.I., Orlova, T.S. et al. Heat capacity of Bio-SiC and SiC/Si ecoceramics prepared from white eucalyptus, beech, and sapele tree wood. Phys. Solid State 55, 454–460 (2013). https://doi.org/10.1134/S1063783413020285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413020285

Keywords

Navigation