Skip to main content
Log in

Peculiarities of aluminium interaction with Ga85In15 eutectics as evidenced by X-ray synchrotron diagnostics

  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A set of X-ray synchrotron techniques, viz., diffraction, EXAFS/XANES spectroscopy and microtomography, is applied to elucidate microstructural changes in a technical aluminium alloy treated with GaIn eutectics. Such a treatment gives rise simultaneously to a prominent enbrittlement of the material and its activation towards reaction with water with the hydrogen evolution. The latter fact makes the activated aluminium a promising energy carrier for the small-scale hydrogen energetics. It is demonstrated that both phenomena are caused by the fast diffusion of the eutectics along intergrain boundaries and microcracks throughout the bulk of polycrystalline Al. The diffusion is promoted by the formation of (Al-Ga-In) solid solution in near-surface regions of Al crystalline grains. The progressive loss of activity of aluminium treated with GaIn eutectics upon a prolonged storage in humid air is due to the decomposition of the eutectics accompanied by the segregation of indium metal and partial gallium oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-Y. Deng, J. M. F. Ferreira, and Y. Sakka, J. Am. Ceram. Soc. 91(12), 3825 (2008).

    Article  Google Scholar 

  2. H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, Renewable Sustainable Energy Rev. 13, 845 (2009).

    Article  Google Scholar 

  3. M.-Q. Fan, L.-X. Sun, and F. Xu, Energy 35, 2922 (2010).

    Article  Google Scholar 

  4. A. V. Parmuzina and O. V. Kravchenko, Int. J. Hydrogen Energy 33, 3073 (2008).

    Article  Google Scholar 

  5. V. G. Ivanov, M. N. Safronov, and O. V. Gavrilyuk, Combustion, Explosion, Shock Waves 37(2), 173 (2001).

    Article  Google Scholar 

  6. Z. Y. Deng, W.-H. Liu, W.-Z. Gai, et al., J. Am. Ceram. Soc. 93(9), 2534 (2010).

    Article  Google Scholar 

  7. L. Soler, J. Macanas, M. Munoz, and J. Casado, Int. J. Hydrogen Energy 32, 4702 (2007).

    Article  Google Scholar 

  8. L. Soler, J. Macanás, M. Muñoz, and J. Casado, Proceedings of the International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey, 13–15 July 2005.

  9. L. Soler, J. Macanás, M. Muñoz, and J. Casado, J. Power Sources 169, 144 (2007).

    Article  Google Scholar 

  10. O. V. Kravchenko, K. N. Semenenko, B. M. Bulychev, and K. B. Kalmykov, J. Alloys Compd. 397, 58 (2005).

    Article  Google Scholar 

  11. M. V. Trenikhin, A. V. Bubnov, A. G. Kozlov, et al., Zh. Fiz. Khim. 80(7), 1262 (2006).

    Google Scholar 

  12. M. V. Trenikhin, A. I. Nizovskii, A. V. Bubnov, and V. K. Duplyakin, Neorg. Mater. 42 (3), 298 (2006).

    Article  Google Scholar 

  13. M. V. Trenikhin, V. K. Duplyakin, A. I. Nizovskii, and A. G. Kozlov, Khim. Interesakh Ustoich. Razvit. 14(1), 63 (2006).

    Google Scholar 

  14. A. B. Arbuzov, V. A. Drozdov, M. V. Trenikhin, et al., Inorg. Mater. 45(12), 1346 (2009).

    Article  Google Scholar 

  15. A. V. Parmurzina, O. V. Kravchenko, B. M. Bulychev, et al., Izv. Ross. Akad. Nauk, Ser. Khim., No. 1, 483 (2009).

  16. S. P. Yatsenko, V. M. Skachkov, and V. G. Shevchenko, Russ. J. Appl. Chem. 84(1), 36 (2011).

    Article  Google Scholar 

  17. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).

    Article  ADS  Google Scholar 

  18. A. P. Hammersley, FIT2D V9.129. Reference Manual. V3.1. ESRF Internal Report: ESRF98HA01T (1998).

  19. B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).

    Article  Google Scholar 

  20. V. Yu. Murzin, Ya. V. Zubavichus, M. V. Chukalina, et al., Proc. 7th International Symposium on Technetium and Rhenium-Science and Utilization, July 4–8, 2011, Moscow, p. 429.

  21. H. Funke, A. C. Scheinost, and M. Chukalina, Phys. Rev. B 71, 094110 (2005).

    Article  ADS  Google Scholar 

  22. H. Funke, M. Chukalina, and A. C. Scheinost, J. Synchrotron. Radiat. 14, 426 (2007).

    Article  Google Scholar 

  23. M. V. Chukalina, A. V. Buzmakov, D. P. Nikolaev, et al., Izmer. Tekh., No. 2, 19 (2008).

  24. B. D. Sharma and J. Donohue, Z. Kistallogr. 472 (1962).

  25. S. Wei, H. Oyanagi, W. Liu, et al., J. Non-Cryst. Solids 275, 160 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nizovskii.

Additional information

Original Russian Text © A.I. Nizovskii, V.I. Bukhtiyarov, A.A. Veligzhanin, Y.V. Zubavichus, V.Y. Murzin, A.A. Chernyshov, A.S. Khlebnikov, R.A. Senin, I.V. Kazakov, A.A. Vorobyov, 2012, published in Kristallografiya, 2012, Vol. 57, No. 5, pp. 774–781.

On the 100th anniversary of the discovery of X-ray diffraction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizovskii, A.I., Bukhtiyarov, V.I., Veligzhanin, A.A. et al. Peculiarities of aluminium interaction with Ga85In15 eutectics as evidenced by X-ray synchrotron diagnostics. Crystallogr. Rep. 57, 693–699 (2012). https://doi.org/10.1134/S1063774512050112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512050112

Keywords

Navigation