Skip to main content
Log in

X-ray backscattering (diffraction at a Bragg angle of π/2): A review

  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The potential of X-ray backscattering in X-ray optics and metrology and in the structural characterization of crystalline objects with different degrees of imperfection are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. G. Pinsker, Dynamic X-Ray Scattering in Ideal Crystals (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Matsushita and H. Hashizume, Handbook on Synchrotron Radiation, Vol. 1: X-Ray Monochromators, Ed. by E. Koch (North-Holland, Amsterdam, 1983), p. 261.

    Google Scholar 

  4. T. S. Toellner, Hyperfine Interact. 125, 3 (2000).

    Article  Google Scholar 

  5. Y. V. Shvyd’ko, X-Ray Optics. Optic. Sci, 98 (Springer, Berlin, 2004).

    Google Scholar 

  6. E. Burkel, Rep. Prog. Phys. 63, 171 (2000).

    Article  ADS  Google Scholar 

  7. Nuclear Resonant Scattering of Synchrotron Radiation, Ed. by E. Gerdau and H. de Waard (Baltzer Science Publishers, Oxford, 1999).

    Google Scholar 

  8. K. Kohra and T. Matsushita, Z. Naturforsch. A, No. 27, 484 (1972).

  9. O. Brummer, H. R. Hoche, and J. Nieber, Phys. Status Solidi A 53, 565 (1979).

    Article  ADS  Google Scholar 

  10. A. Caticha and S. Caticha-Ellis, Phys. Rev. B 25, 971 (1982).

    Article  ADS  Google Scholar 

  11. W. Graeff and G. Materlik, Nucl. Instrum. Methods Phys. Res. 195, 97 (1982).

    Article  Google Scholar 

  12. V. I. Kushnir and E. V. Suvorov, JETP Lett. 44(4), 262 (1986).

    ADS  Google Scholar 

  13. Yu. P. Stetsko, S. A. Kshevetskii, and I. P. Mikhailyuk, Sov. Tech. Phys. Lett. 14(1), 13 (1988).

    Google Scholar 

  14. D. P. Woodruff, D. L. Seymour, C. F. McConville, et al., Phys. Rev. Lett. 58(14), 1460 (1987).

    Article  ADS  Google Scholar 

  15. M. J. Bedzyk, Nucl. Instrum. Methods Phys. Res. A 266, 679 (1988).

    Article  ADS  Google Scholar 

  16. H. Hashizume and T. Nakahata, Jpn. J. Appl. Phys. 27, L1568 (1988).

    Article  ADS  Google Scholar 

  17. Y. V. Shvyd’ko, X-Ray Resonators and Other Applications of Bragg Backscattering. Habilitationsschrift (DESY, Hamburg, 2002); www-library.desy.de/diss02.html (DESY-Thesis-2002-028).

    Google Scholar 

  18. I. A. Vartanyants and M. V. Kovalchuk, Rep. Prog. Phys. 64, 1009 (2001).

    Article  ADS  Google Scholar 

  19. D. P. Woodruff, Prog. Surf. Sci. 57, 1 (1998).

    Article  ADS  Google Scholar 

  20. D. P. Woodruff, Rep. Prog. Phys. 68, 743 (2005).

    Article  ADS  Google Scholar 

  21. N. Kato, J. Phys. Soc. Jpn. 19, 971 (1964).

    Article  ADS  Google Scholar 

  22. M. Hart, Z. Phys. 189(3), 269 (1966).

    Article  ADS  Google Scholar 

  23. V. I. Kushnir and E. V. Suvorov, Phys. Status Solidi A 122, 391 (1990).

    Article  ADS  Google Scholar 

  24. R. Verbeni, F. Sette, M. Krisch, et al., J. Synchrotron Radiat. 3, 62 (1996).

    Article  Google Scholar 

  25. A. Yu. Nikulin and A. Yu. Ignatiev, Phys. Rev. Lett. 76(20), 3731 (1996).

    Article  ADS  Google Scholar 

  26. G. N. Kulipanov, Usp. Fiz. Nauk 177(4), 384 (2007).

    Article  Google Scholar 

  27. S. Caticha-Ellis, R. Boyce, and H. Winick, Nucl. Instrum. Methods Phys. Res. A 291, 132 (1990).

    Article  ADS  Google Scholar 

  28. C. Cusatis, D. Udron, I. Mazzaro, et al., Acta Crystallogr. A 52, 614 (1996).

    Article  Google Scholar 

  29. J. P. Sutter, E. E. Alp, M. Y. Hu, et al., Phys. Rev. B 63, 094111 (2001).

    Article  ADS  Google Scholar 

  30. Y. V. Shvyd’ko, E. Gerdau, J. Jaschke, et al., Phys. Rev. B 57, 4968 (1998).

    Article  ADS  Google Scholar 

  31. A. Q. R. Baron, Hyperfine Interact. 125, 29 (2000).

    Article  Google Scholar 

  32. I. Wegrzecka, M. Grynglas, and M. Wegrzecki, Opto-Electron. Rev. 12(1), 95 (2004).

    Google Scholar 

  33. Y. V. Shvyd’ko, M. Lerche, J. Jäschke, et al., Phys. Rev. Lett. 85, 495 (2000).

    Article  ADS  Google Scholar 

  34. M. Lucht, M. Lerche, H.-C. J. Wille, et al., J. Appl. Crystallogr. 36, 1075 (2003).

    Article  Google Scholar 

  35. M. G. Hönnicke and C. Cusatis, Acta Crystallogr. A 61, C142 (2005).

    Article  Google Scholar 

  36. M. G. Hönnicke and C. Cusatis, J. Appl. Crystallogr. 42, 999 (2009).

    Article  Google Scholar 

  37. M. G. Hönnicke, E. M. Kakuno, C. Cusatis, et al., J. Appl. Crystallogr. 37, 451 (2004).

    Article  Google Scholar 

  38. M. G. Hönnicke and C. Cusatis, J. Phys. D: Appl. Phys. A 38, 73 (2005).

    Article  Google Scholar 

  39. R. Fitzgerald, Phys. Today 53(7), 23 (2000).

    Article  Google Scholar 

  40. A. Momose and K. Hirano, Jpn. J. Appl. Phys. 38(1), 625 (1999).

    Google Scholar 

  41. F. J. Ramírez-Jiménez, AIP Conf. Proc. 1026, 213 (2008).

    Article  ADS  Google Scholar 

  42. S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, et al., Phys. Rev. Lett. 94, 174801 (2005).

    Article  ADS  Google Scholar 

  43. S.-L. Chang, Crystallogr. Rep. 52(1), 23 (2007).

    Article  ADS  Google Scholar 

  44. C. Giles, C. Adriano, A. Freire Lubambo, et al., J. Synchrotron Radiat. 12, 349 (2005).

    Article  Google Scholar 

  45. V. I. Kushnir, P. M. Abbamonte, A. T. Macrander, et al., Proc. SPIE 3151, 324 (1997).

    Article  ADS  Google Scholar 

  46. R. Verbeni, T. Pylkkanen, S. Huotari, et al., J. Synchrotron Radiat. 16, 469 (2009).

    Article  Google Scholar 

  47. G. Ruocco and F. Sette, Phys.: Condens. Matter 1, R259 (1999).

    Article  Google Scholar 

  48. E. Pontecorvo, R. Di Leonardo, C. Masciovecchio, et al., Pure Appl. Chem. 76(1), 79 (2004).

    Article  Google Scholar 

  49. G. Fiquet, J. Badro, and F. Guyot, Phys. Earth Planet Int. 143–144, 5 (2004).

    Article  Google Scholar 

  50. M. D’Astuto and M. Krisch, Collection SFN 10, 487 (2010).

    Google Scholar 

  51. P. Suortti and A. K. Freund, Rev. Sci. Instrum. 60, 2579 (1989).

    Article  ADS  Google Scholar 

  52. V. I. Kushnir and A. T. Macrander, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 331 (1994).

    Article  ADS  Google Scholar 

  53. V. I. Kushnir and M. Popovici, Rev. Sci. Instrum. 67(9), 3366 (1996).

    Article  ADS  Google Scholar 

  54. V. V. Lider, E. O. Baronova, and M. M. Stepanenko, Crystallogr. Rep. 46(3), 341 (2001).

    Article  ADS  Google Scholar 

  55. B. Dorner and H. Peisl, Nucl. Instrum. Methods Phys. Res. 208, 587 (1983).

    Article  ADS  Google Scholar 

  56. B. Dorner, E. Burkel, and J. Peisl, Nucl. Instrum. Methods Phys. Res. A 246, 450 (1986).

    Article  ADS  Google Scholar 

  57. C. Masciovecchio, U. Bergmann, M. Krisch, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 111, 181 (1996).

    Article  ADS  Google Scholar 

  58. C. Masciovecchio, U. Bergmann, M. Krisch, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 117, 339 (1996).

    Article  ADS  Google Scholar 

  59. M. Schwoerer-Böhning, A. T. Macrander, and P. M. Abbamonte, Rev. Sci. Instrum. 69(9), 3109 (1998).

    Article  ADS  Google Scholar 

  60. H. Sinn, J. Phys.: Condens. Matter 13, 7525 (2001).

    Article  ADS  Google Scholar 

  61. H. Sinn, E. E. Alp, A. Alatas, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 467–468, 1545 (2001).

    Article  Google Scholar 

  62. H. Sinn, N. Moldovan, A. H. Said, et al., Proc. SPIE 4783, 123 (2002).

    Article  ADS  Google Scholar 

  63. S. Huotari, F. Albergamo, and Gy Vankó, Rev. Sci. Instrum. 77, 053102 (2006).

    Article  ADS  Google Scholar 

  64. S. Huotari, Gy. Vankó, F. Albergamo, et al., J. Synchrotron Radiat. 12, 467 (2005).

    Article  Google Scholar 

  65. R. Verbeni, M. Kocsis, S. Huotari, et al., J. Phys. Chem. Solids 66, 2299 (2005).

    Article  ADS  Google Scholar 

  66. A. H. Said, H. R. Sinn, and H. Divan, J. Synchrotron Radiat. 8, 92 (2011).

    Google Scholar 

  67. F. Sette, G. Ruocco, M. Krisch, et al., Phys. Rev. Lett. 75, 850 (1995).

    Article  ADS  Google Scholar 

  68. F. Sette, M. H. Krisch, C. Masciovecchio, et al., Science 280, 1550 (1998).

    Article  Google Scholar 

  69. M. Krisch, P. Loubeyre, G. Ruocco, et al., Phys. Rev. Lett. 89, 125502 (2002).

    Article  ADS  Google Scholar 

  70. H. Sinn, F. Sette, U. Bergmann, et al., Phys. Rev. Lett. 78, 1715 (1997).

    Article  ADS  Google Scholar 

  71. T. Scopigno, A. Filipponi, M. Krisch, et al., Phys. Rev. Lett. 89, 255506 (2002).

    Article  ADS  Google Scholar 

  72. T. Scopigno, R. di Leonardo, G. Ruoccoand, et al., Phys. Rev. Lett. 92, 025503 (2004).

    Article  ADS  Google Scholar 

  73. G. Fiquet, J. Badro, and F. Guyot, Phys. Earth Planet Int. 143–144, 5 (2004).

    Article  Google Scholar 

  74. A. Shukla, M. Calandra, M. d’Astuto, et al., Phys. Rev. Lett. 90, 095506 (2003).

    Article  ADS  Google Scholar 

  75. M. D’Astuto, P. Giura, M. Krisch, et al., Physica B 316–317, 150 (2002).

    Article  Google Scholar 

  76. J. Wong, M. Krisch, D. Farber, et al., Science 301, 1078 (2003).

    Article  ADS  Google Scholar 

  77. P.-J. Chen, Y. Liu, T. M. Weiss, et al., Biophys. Chem. 105, 721 (2003).

    Article  Google Scholar 

  78. M. Krisch and F. Sette, Light Scattering in Solid IX. Topics Appl. Physics, Ed. by M. Cardona and R. Merlin (Springer, Berlin, 2007), Vol. 108, p. 317.

    Google Scholar 

  79. S. Huotari, Gy. Vankó, F. Albergamo, et al., J. Synchrotron Radiat. 12, 467 (2005).

    Article  Google Scholar 

  80. R. Caciuffo, S. Melone, F. Rustichelli, et al., Phys. Rep. 152(1), 1 (1987).

    Article  ADS  Google Scholar 

  81. C. Malgrange, Acta Phys. Polonica 82, 13 (1992).

    Google Scholar 

  82. R. D. Deslettes, Appl. Phys. Lett. 12, 133 (1968).

    Article  ADS  Google Scholar 

  83. R. M. J. Cotterill, Appl. Phys. Lett. 12, 403 (1968).

    Article  ADS  Google Scholar 

  84. R. Ts. Gabrielyan, A. H. Toneyan, and O. S. Semerjyan, J. Contemporary Phys. 42(2), 75 (2007).

    Article  Google Scholar 

  85. J. F. van der Veen and F. Pfeiffer, J. Phys: Condens. Matter 16, 5003 (2005); J. Phys: Condens. Matter 17, 6109 (2004).

    Article  ADS  Google Scholar 

  86. A. Snigirev, I. Snigireva, V. Kohn, et al., Rev. Sci. Instrum. 66, 5486 (1995).

    Article  ADS  Google Scholar 

  87. C. Raven, A. Snigirev, I. Snigireva, et al., Appl. Phys. Lett. 69, 23 (1996).

    Article  Google Scholar 

  88. B. Lengeler, Naturwissenschaften 88, 249 (2001).

    Article  ADS  Google Scholar 

  89. J. I. Espeso, P. Cloetens, J. Baruchel, et al., J. Synchrotron Radiat. 5(5), 1243 (1998).

    Article  Google Scholar 

  90. P. Cloetens, W. Ludwig, J. Baruchel, et al., J. Phys. D: Appl. Phys. A 32, 145 (1999).

    Article  ADS  Google Scholar 

  91. M. G. Hönnicke, E. M. Kakuno, G. Kellerman, et al., Optics Express 16(13), 9284 (2008).

    Article  ADS  Google Scholar 

  92. K.-D. Liss, R. Hock, M. Gomm, et al., Nature 404, 371 (2000).

    Article  ADS  Google Scholar 

  93. K.-D. Liss, R. Hock, M. Gomm, et al., Proc. SPIE 4143, 78 (2001).

    Article  ADS  Google Scholar 

  94. Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, et al., Phys. Rev. Lett. 90, 013904 (2003).

    Article  ADS  Google Scholar 

  95. V. V. Slabko, Soros. Obrazovat. Zh., No. 1, 79 (1997).

  96. R. R. Lindberg, K.-J. Kim, Yu. Shvyd’ko, et al., Phys. Rev. ST Accel. Beams 14, 010701 (2011).

    Article  ADS  Google Scholar 

  97. R. Colella and A. Luccio, Opt. Commun. 50, 41 (1984).

    Article  ADS  Google Scholar 

  98. K.-J. Kim, Y. Shvyd’ko, and S. Reiche, Phys. Rev. Lett. 100, 244802 (2008).

    Article  ADS  Google Scholar 

  99. A. Steyerl and K.-A. Steinhauser, Z. Phys. B 34, 221 (1979).

    Article  ADS  Google Scholar 

  100. A. Caticha and S. Caticha-Ellis, Phys. Status Solidi A 119, 643 (1990).

    Article  ADS  Google Scholar 

  101. A. Caticha, K. Aliberty, and S. Caticha-Ellis, Rev. Sci. Instrum. 67, 3380 (1996).

    Article  ADS  Google Scholar 

  102. Y. V. Shvyd’ko and E. Gerdau, Hyperfine Interact. 123/124, 741 (1999).

    Article  Google Scholar 

  103. V. G. Kohn, Y. V. Shvyd’ko, and E. Gerdau, Phys. Status Solidi B 221, 597 (2000).

    Article  ADS  Google Scholar 

  104. S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, et al., Phys. Rev. B 74, 134111 (2006).

    Article  ADS  Google Scholar 

  105. S.-Y. Chen, Y.-Y. Chang, M.-T. Tang, et al., Proc. SPIE 7077, 70770J (2008).

    Article  Google Scholar 

  106. Y.-Y. Chang, S.-Y. Chen, H.-H. Wu, et al., Opt. Express 18(8), 7886 (2010).

    Article  Google Scholar 

  107. Y.-Y. Chang, S.-Y. Chen, and S.-C. Weng, X-Ray Opt. Instrum. 2010, Article ID 421945 (2010).

  108. A. Snigirev, V. Kohn, I. Snigireva, et al., Appl. Opt. 37, 653 (1998).

    Article  ADS  Google Scholar 

  109. V. G. Kohn, I. V. Kohn, and E. A. Manykin, Zh. Eksp. Teor. Fiz. 116, 940 (1999).

    Google Scholar 

  110. J. P. Sutter, E. E. Alp, and M. Y. Hu, Phys. Rev. B 63, 094111 (2001).

    Article  ADS  Google Scholar 

  111. C. Giles and C. Cusatis, Appl. Phys. Lett. 59, 641 (1991).

    Article  ADS  Google Scholar 

  112. S. Kikuta, Y. Imai, T. Iizuka, et al., J. Synchrotron Radiat. 5, 670 (1998).

    Article  Google Scholar 

  113. M.-S. Chiu, Yu. P. Stetsko, and S.-L. Chang, Acta Crystallogr. A 64, 394 (2008).

    Article  ADS  Google Scholar 

  114. M. Seto, Y. Yoda, S. Kikuta, et al., Phys. Rev. Lett. 74, 3828 (1995).

    Article  ADS  Google Scholar 

  115. M. Yabashi, K. Tamasaku, S. Kikuta, et al., Rev. Sci. Instrum. 72, 4080 (2001).

    Article  ADS  Google Scholar 

  116. T. S. Toellner, A. Alatas, and A. H. Said, J. Synchrotron Radiat. 18, 605 (2011).

    Article  Google Scholar 

  117. A. A. Zadernovskii, Radioelektron. Nanosistemy. Informatsionnye Tekhnol. 1(1–2), 33 (2009).

    Google Scholar 

  118. A. A. Zadernovsky, Laser Phys. 14(4), 448 (2004).

    Google Scholar 

  119. H.-C. Wille, R. P. Hermann, I. Sergueev, et al., Phys. Rev. B 76, 140301 (2007).

    Article  ADS  Google Scholar 

  120. H.-C. Wille, R. P. Hermann, I. Sergueev, et al., Europhys. Lett. 91, 62001 (2010).

    Article  ADS  Google Scholar 

  121. P. van der Linden, H.-C. Wille, and Yu. V. Shvyd’ko, AIP Conf. Proc. 879, 915 (2007).

    Article  ADS  Google Scholar 

  122. Y. V. Shvyd’ko, M. Gerken, H. Franz, et al., Europhys. Lett. 56, 39 (2001).

    Google Scholar 

  123. I. Sergeev, H.-C. Wille, R. P. Hermann, et al., J. Synchrotron Radiat. 18(5), 802 (2011).

    Article  Google Scholar 

  124. H. Yavas, E. E. Alp, H. Sinn, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 582, 149 (2007).

    Article  ADS  Google Scholar 

  125. M. Lucht, Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik (Universitat, Hamburg, 2005).

  126. A. Q. R. Baron, J. P. Sutter, T. Ishikawa, et al., Acta Crystallogr. A 61, C135 (2005).

    Article  Google Scholar 

  127. J. P. Sutter, A. Q. R. Baron, T. Ishikawa, et al., J. Phys. Chem. Solids 66(12), 2306 (2005).

    Article  ADS  Google Scholar 

  128. J. P. Sutter, A. Q. R. Baron, D. Miwa, et al., J. Synchrotron Radiat. 13, 278 (2006).

    Article  Google Scholar 

  129. Y. Imai, Y. Yoda, X. Zhang, et al., AIP Conf. Proc. 879, 930 (2007).

    Article  ADS  Google Scholar 

  130. K. A. Gschneidner, Solid State Phys. 16, 275 (1964).

    Article  Google Scholar 

  131. Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo, et al., Nature Phys. 6, 196 (2010).

    Article  ADS  Google Scholar 

  132. K.-J. Kim and Y. Shvyd’ko, Phys. Rev. Phys. Spec. Top Accel. Beams 12, 030703 (2009).

    ADS  Google Scholar 

  133. A. Freund and J. Schneider, J. Cryst. Growth 13–14, 247 (1972).

    Article  Google Scholar 

  134. A. Okazaki and M. Kawaminami, Jpn. J. Appl. Phys. 12, 783 (1973).

    Article  ADS  Google Scholar 

  135. W. L. Bond, Acta Crystallogr. 3, 814 (1960).

    Article  Google Scholar 

  136. S. A. Stepanov, E. A. Kondrashkina, and D. V. Novikov, Nucl. Instrum. Methods Phys. Res. A 301, 350 (1991).

    Article  ADS  Google Scholar 

  137. A. M. Afanas’ev and M. K. Melkonyan, Acta Crystallogr. A 39, 207 (1983).

    Article  Google Scholar 

  138. Y. V. Shvyd’ko, M. Lucht, E. Gerdau, et al., J. Synchrotron Radiat. 9, 17 (2002).

    Article  Google Scholar 

  139. P. Becker, K. Dorenwendt, G. Ebeling, et al., Phys. Rev. Lett. 46, 1540 (1981).

    Article  ADS  Google Scholar 

  140. M. Y. Hu, H. Sinn, A. Alatas, et al., Phys. Rev. B 67, 113306 (2003).

    Article  ADS  Google Scholar 

  141. H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, et al., Phys. Rev. Lett. 89, 285901 (2002).

    Article  ADS  Google Scholar 

  142. T. Tchen, Tech. Phys. Lett. 29(3), 235 (2003).

    Article  ADS  Google Scholar 

  143. S. Stoupin and Y. V. Shvyd’ko, Phys. Rev. Lett. 104, 085901 (2010).

    Article  ADS  Google Scholar 

  144. S. Stoupin and Y. V. Shvyd’ko, Phys. Rev. B 83, 104102 (2011).

    Article  ADS  Google Scholar 

  145. A. Hauschild, R. Temirov, S. Soubatch, et al., Phys. Rev. B 81, 125432 (2010).

    Article  ADS  Google Scholar 

  146. I. Kröger, B. Stadtmuller, C. Kleimann, et al., Phys. Rev. B 83, 195414 (2011).

    Article  ADS  Google Scholar 

  147. S. A. Stepanov, Phys. Status Solidi A 132(1), 9 (1992).

    Article  ADS  Google Scholar 

  148. T. Jach, Y. Zhang, R. Colella, et al., Phys. Rev. Lett. 82, 2904 (1999).

    Article  ADS  Google Scholar 

  149. N. Ishikawa, T. Kitano, and J. Matsui, J. Appl. Crystallogr. 20, 344 (1987).

    Article  Google Scholar 

  150. Y. V. Shvyd’ko, M. Lucht, E. Gerdau, et al., Adv. Photon Source User Activity Rep. 1, 467 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lider.

Additional information

Original Russian Text © V.V. Lider, 2012, published in Kristallografiya, 2012, Vol. 57, No. 5, pp. 705–726.

On the 100th anniversary of the discovery of X-ray diffraction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lider, V.V. X-ray backscattering (diffraction at a Bragg angle of π/2): A review. Crystallogr. Rep. 57, 628–647 (2012). https://doi.org/10.1134/S1063774512050094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512050094

Keywords

Navigation