Skip to main content
Log in

A model for the explosive synthesis of p nuclei

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A model for the synthesis of p nuclei during a supernova explosion of a 25 M star is presented. Its main distinguishing feature is the requirement that the yield of s nuclei after the explosion fully correspond to the observed solar-system abundances. A fully self-consistent system of kinetic equations including (n, γ), (p, γ), (α, γ), (p, n), (α, n), and (α, p) reactions and their reverse reactions was solved for the mass fractions of various nuclei, taking into account the dynamics of the propagation of the supernova shock. The absolute abundances of the p nuclei are calculated, and the role of helium layers in the supernova in the synthesis of r nuclei is analyzed. The calculated abundances of p nuclei are in overall good agreement with observations. This makes it possible to synthesize 113In, 138La, and some other problematic isotopes, although the problem of synthesizing molybdenum and ruthenium remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Suess and H. C. Urey, Rev. Mod. Phys. 28, 53 (1956).

    Article  ADS  Google Scholar 

  2. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  3. G. Wallerstein, I. Iben, Jr., P. Parker, et al., Rev. Mod. Phys. 69, 995 (1997).

    Article  ADS  Google Scholar 

  4. Ya. M. Kramarovskii and V. P. Chechev, The Synthesis of Elements in the Universe (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  5. K. R. Lang, Astrophysical Formulae: a Compendium for the Physicist and Astrophysicist (Springer-Verlag, Berlin, 1974; Mir, Moscow, 1978), Part 2.

    Google Scholar 

  6. M. Rayet, N. Prantzos, and M. Arnould, Astron. Astrophys. 227, 271 (1990).

    ADS  Google Scholar 

  7. M. Rayet, M. Arnould, M. Hashimoto, et al., Astron. Astrophys. 298, 517 (1995).

    ADS  Google Scholar 

  8. S. E. Woosley and W. M. Howard, Astrophys. J., Suppl. Ser. 36, 285 (1978).

    Article  ADS  Google Scholar 

  9. T. Rauscher, A. Heger, R. D. Hoffman, and S. E. Woosley, astro-ph/0112478 (2002), Vol. 2.

  10. S.-I. Fujimoto, M. Hashimoto, O. Koike, et al., astro-ph/0211171 (2002), Vol. 1.

  11. S. Goriely, J. Jose, M. Hernanz, et al., astro-ph/0201199 (2002), Vol. 1.

  12. G. V. Domogatskii and D. K. Nadezhin, Astron. Zh. 55, 516 (1978) [Sov. Astron. 22, 297 (1978)].

    ADS  Google Scholar 

  13. J. Adouze and J. W. Truran, Astrophys. J. 202, 204 (1975).

    Article  ADS  Google Scholar 

  14. D. G. Madland and L. Steward, LA-6783-MS (1977).

  15. I. V. Kopylov and T. A. Krylovetskaya, Yad. Fiz. 61, 1589 (1998) [Phys. At. Nucl. 61, 1479 (1998)].

    Google Scholar 

  16. I. V. Kopytin, K. N. Karelin, and A. A. Nekipelov, Yad. Fiz. 67, 1455 (2004) [Phys. At. Nucl. 67, 1429 (2004)].

    Google Scholar 

  17. T. A. Weaver and G. B. Zimmerman, Astrophys. J. 225, 1021 (1978).

    Article  ADS  Google Scholar 

  18. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967).

    Google Scholar 

  19. G. S. Bisnovatyi-Kogan, Physical Questions in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  20. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1981; Academic, New York, 1959).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  22. http://www-phys.llnl.gov/Research/RRSN.

  23. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

    Google Scholar 

  24. Essays in Nuclear Astrophysics, Ed. by C. Barnes, D. Clayton, and D. Schramm (Cambridge Univ. Press, Cambridge, 1982; Mir, Moscow, 1986).

    Google Scholar 

  25. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  26. M. Rayet, V. Costa, and M. Arnould, astro-ph/0010220 (2000), Vol. 1.

  27. V. Costa, M. Rayet, R. A. Zappala, and M. Arnould, astro-ph/0005513 (2000), Vol. 1.

  28. W. Rapp, M. Wiescher, H. Schatz, and F. Kappeler, astro-ph/ (2004), Vol. 1.

  29. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    Article  ADS  Google Scholar 

  30. H. Schatz, A. Aprahamian, V. Barnard, et al., Phys. Rev. Lett. 86, 3471 (2001).

    Article  ADS  Google Scholar 

  31. R. N. Boyd, Eur. Phys. J. A 13, 203 (2002).

    Article  ADS  Google Scholar 

  32. J. J. Cowan, D. L. Burris, C. Sneden, et al., Astrophys. J. 439, L51 (1995).

    Article  ADS  Google Scholar 

  33. D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, astro-ph/9807056 (1998), Vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.M. Babishov, I.V. Kopytin, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 638–648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babishov, E.M., Kopytin, I.V. A model for the explosive synthesis of p nuclei. Astron. Rep. 50, 569–578 (2006). https://doi.org/10.1134/S1063772906070079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906070079

PACS numbers

Navigation