Skip to main content
Log in

Photonic spectral density of coupled optical cavities

  • Fundamental Problems
  • Published:
Laser Physics

Abstract

We study a pair of anharmonic optical cavities that is connected by an optical fiber. The photonic spectral density characterizes the evolution of the coupled cavities after the system has been prepared in a Fock or N00N state. We evaluate the photonic spectral density within the recursive projection method and find that the anharmonicity leads to a collapse of the low-energy spectrum. The level spacing of the remaining spectrum agrees quite well with that of the harmonic cavities, whereas the spectral weights are strongly affected by the anharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, Science 319, 202 (2008).

    Article  Google Scholar 

  2. V. I. Yukalov, Laser Phys. 19, 1 (2009).

    Article  ADS  Google Scholar 

  3. S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295 (2008).

    Article  ADS  Google Scholar 

  4. Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 92, 150401 (2004).

    Article  ADS  Google Scholar 

  5. M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  6. C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007).

    Article  ADS  Google Scholar 

  7. M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007).

    Article  ADS  Google Scholar 

  8. S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, Phys. Rev. Lett. 98, 210405 (2007).

    Article  ADS  Google Scholar 

  9. M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404 (2008).

    Article  ADS  Google Scholar 

  10. M. Kollar and M. Eckstein, Phys. Rev. A 78, 013626 (2008).

    Article  ADS  Google Scholar 

  11. M. Möckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008).

    Article  ADS  Google Scholar 

  12. V. I. Yukalov, Laser Phys. Lett. 8, 485 (2011).

    Article  ADS  Google Scholar 

  13. V. I. Yukalov, A. Rakhimov, and S. Mardonov, Laser Phys. 21, 264 (2011).

    Article  ADS  Google Scholar 

  14. G. Roux, Phys. Rev. A 79, 021608 (2009).

    Article  ADS  Google Scholar 

  15. M. Rigol, Phys. Rev. A 82, 037601 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Brune, J. Bernu, C. Guerlin, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, I. Dotsenko, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 101, 240402 (2008).

    Article  ADS  Google Scholar 

  17. H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A.D. OConnell, D. Sank, J. Wenner, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 101, 240401 (2008).

    Article  ADS  Google Scholar 

  18. H. Carmichael, Nature Phys. 4, 346 (2008).

    Article  ADS  Google Scholar 

  19. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. H. W. Pinske, K. Murr, and G. Rempe, Nature Phys. 4, 382 (2008).

    Article  ADS  Google Scholar 

  20. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997).

    Article  ADS  Google Scholar 

  21. P. Grangier, D. F. Walls, and K. M. Gheri, Phys. Rev. Lett. 81, 2833 (1998).

    Article  ADS  Google Scholar 

  22. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Nature Phys. 2, 849 (2006).

    Article  ADS  Google Scholar 

  23. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Laser & Photon. Rev. 2, 527556 (2008).

    Article  Google Scholar 

  24. A.-C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Phys. Rev. Lett. 102, 023602 (2009).

    Article  ADS  Google Scholar 

  25. K. Ziegler, Phys. Rev. A 81, 034701 (2010).

    Article  ADS  Google Scholar 

  26. E. T. Jaynes and F. W. Cummings, Proc. Inst. Elect. Eng. 51, 89 (1963).

    Google Scholar 

  27. F. W. Cummings, Phys. Rev. 140, A1051 (1965).

    Article  ADS  Google Scholar 

  28. R. R. Puri and G. S. Argawal, Phys. Rev. A 33, 3610 (1985).

    Article  ADS  Google Scholar 

  29. V. Buzek and I. Jex, J. Mod. Optics 36, 1427 (1989).

    Article  ADS  Google Scholar 

  30. M. J. Werner and A. Imamoglu, Phys. Rev. A 61, 011801(R) (1999).

    Article  ADS  Google Scholar 

  31. K. Ziegler, J. Phys. B: At. Mol. Opt. Phys. 44, 145302 (2011).

    Article  ADS  Google Scholar 

  32. M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett. 100, 030602 (2008).

    Article  ADS  Google Scholar 

  33. C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965).

    Google Scholar 

  34. M. L. Mehta, Random Matrices (Academic Press, New York, 1967).

    MATH  Google Scholar 

  35. T. A. Brody, et al., Rev. Mod. Phys. 53, 385 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  36. J. J. Garca-Ripoll, P. Zoller, and J. I. Cirac, J. Phys. B: At. Mol. Opt. Phys. 38, S567 (2005).

    Article  ADS  Google Scholar 

  37. D. J. Wineland and D. Leibfried, Laser Phys. Lett. 8, 175 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ziegler.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, K. Photonic spectral density of coupled optical cavities. Laser Phys. 22, 331–337 (2012). https://doi.org/10.1134/S1054660X1201032X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X1201032X

Keywords

Navigation