Skip to main content
Log in

Critical radius of zirconia inclusions in transformation toughening of ceramics

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper presents a transformation toughening model of ceramics taking into account an energy barrier the overcoming of which results in phase transformation of zirconia inclusions. Methods based on experimental data analysis are proposed for estimating the energy barrier. The size range of zirconia inclusions in Al2O3 and WC matrices is defined depending on the energy barrier value, working temperature, and external load. It is shown that the introduction of an energy barrier enables an adequate estimation of the size range of inclusions at which transformation toughening occurs in ceramics. The elastic interaction of inclusions is shown to cause a decrease in their critical radii with the growing volume density, which agrees with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, B., Toughening of Yttria-Stabilised Tetragonal Zirconia Ceramics, Int. Mater. Rev., 2005, vol. 50, no. 4, pp. 239–259.

    Article  Google Scholar 

  2. Kelly, P.M. and Francis Rose, L.R., The Martensitic Transformation in Ceramics—Its Role in Transformation Toughening, Prog. Mater. Sci., 2002, vol. 47, pp. 463–557.

    Article  Google Scholar 

  3. Evans, A.G., Burlingame, N., Drory, M., and Kriven, W.M., Martensitic Transformations in Zirconia—Particle Size Effects and Toughening, Acta Metall., 1981, vol. 29, no. 4, pp. 447–456.

    Article  Google Scholar 

  4. Milyavskii, V.V., Savinykh, A.S., Akopov, F.A., Borovkova, L.B., Borodina, T.I., Val’yano G.E., Ziborov, V.S., Lukin, E.S., and Popova, N.A., A Ceramic Based on Partially Stabilized Zirconia: Synthesis, Structure, and Properties under Dynamic Load, High Temp., 2011, vol. 49, no. 5, pp. 685–689.

    Article  Google Scholar 

  5. Alfonso, B.L., Yuichiro, M., Masanori, K., and Merrilea, J., Fracture Toughness of Nanocrystalline Tetragonal Zirconia with Low Yttria Content, Acta Mater., 2002, vol. 50, pp. 4555–4562.

    Article  Google Scholar 

  6. Karagedov, G.R., Shatskaya, S.S., and Lyakhov, N.Z., Nature of a Mechanically Stimulated Phase Change in Zirconia, Chem. Sustain. Dev., 2006, no. 4, pp. 345–353.

    Google Scholar 

  7. Popov, V.V. and Petrunin, V.F., Study of the Formation and Stability of Metastable Phases in Nanocrystalline ZrO2, Ogneup. Tekh. Keram., 2007, no. 8, pp. 8–14.

    Google Scholar 

  8. Lange, F.F., Transformation Toughening. Part 1, J. Mater. Sci., 1982, vol. 17, no. 1, pp. 225–234.

    Article  ADS  Google Scholar 

  9. Lange, F.F., Transformation Toughening. Part 3, J. Mater. Sci., 1982, vol. 17, no. 1, pp. 240–246.

    Article  ADS  Google Scholar 

  10. Heuer, A.H., Claussen, N., Kriven, W.M., and Ruhle, M., Stability of Tetragonal ZrO2 Particles in Ceramic Matrices, J. Am. Ceram. Soc., 1982, vol. 65, no. 12, pp. 645–650.

    Article  Google Scholar 

  11. Garvie, R.C. and Swain, M.V., Thermodynamics of the Tetragonal to Monoclinic Phase Transformation in Constrained Zirconia Microcrystals. Part 1, J. Mater. Sci., 1985, vol. 20, pp. 1193–1200.

    Article  ADS  Google Scholar 

  12. Garvie, R.C., Thermodynamics of the Tetragonal to Monoclinic Phase Transformation in Constrained Zirconia Microcrystals. Part 2, J. Mater. Sci., 1985, vol. 20, pp. 3479–3486.

    Article  ADS  Google Scholar 

  13. Lobodyuk, V.A. and Estrin, E.I., Martensitic Transformations, Moscow: Fizmatlit, 2009.

    Google Scholar 

  14. Kashchenko, M.P. and Chashchina, V.G., Critical Grain Size in the γ → α Martensite Transformation. Thermodynamic Analysis with regard to Spatial Scales Characteristic of Martensite Nucleation, Phys. Mesomech., 2010, vol. 13, no. 3–4, pp. 189–194.

    Article  Google Scholar 

  15. Kriven, W.M., Martensitic Toughening of Ceramics, J. Mater. Sci. Eng. A, 1990, vol. 127, pp. 249–255.

    Article  Google Scholar 

  16. De Aza, A.H., Chevalier, J., Fantozzi, G., Schehl, M., and Torrecillas, R., Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses, Biomaterials, 2002, vol. 23, pp. 937–945.

    Article  Google Scholar 

  17. Makoto, N., High-Temperature Oxidation of Ceramic Matrix Composites Dispersed with Metallic Particles, Sci. Tech. Adv. Mater., 2005, vol. 6, pp. 129–134.

    Article  Google Scholar 

  18. Eshelby, J.D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. Roy. Soc. London. A, 1957, vol. 241, no. 1226, pp. 376–396.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Freidin, A.B., On New Phase Inclusions in Elastic Solids, Z. Angew. Math. Mech., 2007, vol. 87, no. 2, pp. 102–116.

    Article  MATH  MathSciNet  Google Scholar 

  20. Freidin, A.B., Fracture Mechanics. Eshelby Problem, St. Petersburg: Izd-vo SPbPU, 2010.

    Google Scholar 

  21. Liang, Y.M. and Zhao, J.H., Effect of Zirconia Particles Size Distribution on the Toughness of Zirconia-Containing Ceramics, J. Mater. Sci., 1999, vol. 34, pp. 2175–2181.

    Article  ADS  Google Scholar 

  22. Kanaun, S.K. and Levin, V.M., Self-Consistent Methods for Composites. Vol. 1: Static Problems, Berlin: Springer, 2007.

    Google Scholar 

  23. Kanaun, S.K. and Levin, V.M., Effective Field Method in Composite Mechanics, Petrozavodsk: Izd-vo Petrozavodsk. Univ., 1993.

    MATH  Google Scholar 

  24. Balmori-Ramirez, H., Jaramillo-Vigueras, D., and Rigaud, M., Microstructure of Al2O3-PSZ(MgO) Composites, J. Mater. Sci., 1995, vol. 14, pp. 603–605.

    Google Scholar 

  25. Green, D.J., Critical Microstructures for Microcracking in Al2O3-ZrO2 Composites, J. Am. Ceram. Soc., 1982, vol. 65, no. 12, pp. 610–614.

    Article  Google Scholar 

  26. Hussainova, I., Antonov, M., and Voltsihhin, N., Assessment of Zirconia Doped Hardmetals as Tribomaterials, Wear, 2011, no. 271, pp. 1909–1915.

    Google Scholar 

  27. Bartolome, J.F., Bruno, G., and Deaza, A.H., Neutron Diffraction Residual Stress Analysis of Zirconia Toughened Alumina (ZTA) Composites, J. Euro. Ceramic Soc., 2008, vol. 28, pp. 1809–1814.

    Article  Google Scholar 

  28. Wang, X.-L., Hubbard, C.R., Alexander, K.B., Becher, P.F., Fernandez-Baca, J.A., and Spooner, S., Neutron Diffraction Measurements of the Residual Stresses in Al2O3-ZrO2 Ceramic Composites, J. Amer. Ceram. Soc., 1994, vol. 77, pp. 1569–1575.

    Article  Google Scholar 

  29. Kern, F. and Palermo, P., Microstructure and Mechanical Properties of Alumina 5 vol % Zirconia Nanocomposites Prepared by Powder Coating and Powder Mixing Routes, Ceram. Int., 2013, vol. 39, pp. 637–682.

    Article  Google Scholar 

  30. Grabowski, G. and Pedzich, Z., Residual Stresses in Particulate Composites with Alumina and Zirconia Matrices, J. Euro. Ceram. Soc., 2007, vol. 27, pp. 1287–1292.

    Article  Google Scholar 

  31. Moriya, Y. and Navrotsky, A., High-Temperature Calorimetry of Zirconia: Heat Capacity and Thermodynamics of the Monoclinic-Tetragonal Phase Transition, J. Chem. Thermodynamics, 2006, vol. 38, pp. 211–223.

    Article  Google Scholar 

  32. Tuan, H., Chen, R.Z., Wang, T.C., Cheng, P.S., and Kuo, P.S., Mechanical Properties of Al2O3/ZrO2 Composites, J. Euro. Ceram. Soc., 2002, vol. 22, pp. 2827–2833.

    Article  Google Scholar 

  33. Vilchevskaya, E.N. and Freidin, A.B., On Phase Transitions in a Domain of Material Inhomogeneity. I. Phase Transitions of Inclusions in a Homogeneous External Field, Mech. Solids, 2007, vol. 42, no. 5, pp. 823–840.

    Article  Google Scholar 

  34. Claussen, N., Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase, J. Amer. Ceram. Soc., 1976, vol. 59, no. 1–2, pp. 49–51.

    Article  Google Scholar 

  35. Babaev, A.A., Khokhlachev, P.P., Nikolaev, Yu.A., Terukov, E.I., Freidin, A.B., Filippov, R.A., Filippov, A.K., and Manabaev, N.K., Nanocomposite Based on Modified Multiwalled Carbon Nanotubes: Fabrication by an Oriented Spinning Process and Electrical Conductivity, Inorg. Mater., 2012, vol. 48, no. 10, pp. 997–1000.

    Article  Google Scholar 

  36. Suresh, A., Mayo, M.J., Porter, W.D., and Rawn, C.J., Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, J. Amer. Ceram. Soc., 2003, vol. 86, no. 2, pp. 360–362.

    Article  Google Scholar 

  37. Chen, M., Hallstedt, B., and Gauckler, L.J., Thermodynamic Modeling of the ZrO2-YO1.5 System, Solid State Ionics, 2004, vol. 170, pp. 255–274.

    Article  Google Scholar 

  38. Ge, Q.L., Lei, T.C., Mao, J.F., and Zhou, Y., In Situ Transmission Electron Microscopy Observations of the Tetragonal-to-Monoclinic Phase Transformation of Zirconia in Al2O3/ZrO2 (2 mol % Y2O3) Composite, J. Mater. Sci. Lett., 1993, vol. 12, no. 11, pp. 819–822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Filippov.

Additional information

Original Russian Text © R.A. Filippov, A.B. Freidin, I.V. Hussainova, E.N. Vilchevskaya, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 2, pp. 55–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, R.A., Freidin, A.B., Hussainova, I.V. et al. Critical radius of zirconia inclusions in transformation toughening of ceramics. Phys Mesomech 18, 33–42 (2015). https://doi.org/10.1134/S1029959915010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915010051

Keywords

Navigation