Skip to main content
Log in

Heat transfer in infinite harmonic one-dimensional crystals

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A closed system of differential-difference equations describing thermal processes in one-dimensional harmonic crystals is obtained in the paper. An equation connecting the heat flow and the kinetic temperature is obtained as a solution of the system. The obtained law of heat conduction is different from Fourier’s law and results in an equation that combines properties of the standard heat equation and the wave equation. The resulting equation is an analytic consequence from the dynamical equations for the particles in the crystal. Unlike equations of hyperbolic heat conduction, this equation is time-reversible and has only one independent parameter. A general analytical solution of this differential equations is obtained, and the analytical results are confirmed by computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Chandrasekharaiah, Appl. Mech. Rev. 39 (3), 355 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. K. V. Poletkin, G. G. Gurzadyan, J. Shang, and V. Kulish, Appl. Phys., Ser. B 107, 137 (2012).

    Article  ADS  Google Scholar 

  3. Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys. 8 (5), 1073 (1967).

    Article  ADS  Google Scholar 

  4. A. Dhar, Adv. Phys. 57 (5), 457 (2008).

    Article  ADS  Google Scholar 

  5. A. A. Le-Zakharov and A. M. Krivtsov, Dokl. Phys. 53 (5), 261 (2008).

    Article  MATH  ADS  Google Scholar 

  6. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007), p. 304 (in Russian).

    Google Scholar 

  7. Mechanics—from Discrete to Continuous, Ed. by V. M. Fomin (Izd. SO RAN, Novosibirsk, 2008), p. 243 (in Russian).

  8. W. G. Hoover and C. G. Hoover, Time Reversibility, Computer Simulations, Algorithms, Chaos, Advanced Series in Nonlinear Dynamics 13 (World Scientific, 2012), p. 397.

    Book  Google Scholar 

  9. R. V. Goldstein and N. F. Morozov, Phys. Mesomechan. 10 (5–6), 235 (2007).

    Article  Google Scholar 

  10. A. M. Krivtsov and N. F. Morozov, Phys. Solid State 44 (12), 2260 (2002).

    Article  ADS  Google Scholar 

  11. A. M. Krivtsov, Dokl. Phys. 59 (9), 427 (2014).

    Article  Google Scholar 

  12. A. M. Krivtsov, in Proc. of XXXIV Summer School “Advanced Problems in Mechanics” (St. Petersburg, Russia, 2007), pp. 261–273.

    Google Scholar 

  13. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954), p. 432.

    MATH  Google Scholar 

  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Government Printing Office, U.S., 1972), p. 1046.

    MATH  Google Scholar 

  15. M. B. Babenkov and E. A. Ivanova, Cont. Mechan. Thermodynam. 26 (4), 483 (2013).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Krivtsov.

Additional information

Published in Russian in Doklady Akademii Nauk, 2015, Vol. 464, No. 2, pp. 162–166.

Presented by Academician N.F. Morozov November 24, 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivtsov, A.M. Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys. 60, 407–411 (2015). https://doi.org/10.1134/S1028335815090062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335815090062

Keywords

Navigation