Skip to main content
Log in

The influence of crustal rheology on plate subduction based on numerical modeling results

  • Geology
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Computer simulation of subduction was performed using nonlinear equations of deformable solid mechanics encompassing all types of nonlinearity: geometric, physical, and contact. This study presents a numerical model of subduction with allowance for the gabbro-to-eclogite phase transition. The model rheology is a plastic compressible material (Mohr-Coulomb law for a deformed rock material). It was shown that deep subduction can be modeled well with the selection of appropriate parameters of rock plasticity providing the initial thickening in the subducting slab nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Jarrard, Rev. Geophys. 24(2), 217–284 (1986).

    Article  Google Scholar 

  2. C. Doglioni, Earth-Sci. Rev. 83, 125–175 (2007).

    Article  Google Scholar 

  3. S. Lallemand, A. Heuret, and D. Boutelier, Geochem. Geophys. Geosyst. 6, Q09006 (2005); doi:10.1029/2005GC000917.

    Article  Google Scholar 

  4. S. Rondenay, A. Abers, and P. E. van Keken, Geology 36, 275–278 (2008).

    Article  Google Scholar 

  5. S. N. Korobeynikov, V. V. Reverdatto, O. P. Polyansky, V. G. Sverdlova, and A. V. Babichev, Num. Anal. Appl. 2(1), 58–73 (2009).

    Article  Google Scholar 

  6. S. N. Korobeynikov, O. P. Polyansky, V. G. Sverdlova, et al., Dokl. Akad. Nauk 420, 654–658 (2008) [Dokl. Earth Sci. 421, 724 (2008)].

    Google Scholar 

  7. A. I. Shemenda, Subduction: Insights from Physical Modeling (Kluwer Acad., Dordrecht, 1994).

    Google Scholar 

  8. M. G. Bjørnerud, H. Austrheim, and M. G. Lund, J. Geophys. Res. 107(B10), 2252 (2002); doi:10.1029/2001JB000527.

    Article  Google Scholar 

  9. A. E. Ringwood and D. H. Green, in Petrology of the Upper Mantle (Austral. Nat. Univ., 1966; Mir, Moscow, 1968), pp. 78–117.

  10. S. N. Korobeynikov, Nonlinear Strain Analysis of Solids (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  11. Marc Users Guide (MSC Software Corporation, 2005).

  12. A. Nadai, Theory of Flow and Fracture of Solid (McGraw-Hill, 1963; Mir, Moscow, 1969).

  13. C. D. Brown and R. J. Phillips, J. Geophys. Res. 105(B6), 13 221–13 237 (2000).

    Article  Google Scholar 

  14. C. J. Warren, C. Beaumont, and R. A. Jamieson, Earth Planet. Sci. Lett. 267, 129–145 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.P. Polyansky, S.N. Korobeynikov, V.G. Sverdlova, A.V. Babichev, V.V. Reverdatto, 2010, published in Doklady Akademii Nauk, 2010, Vol. 430, No. 4, pp. 518–522.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyansky, O.P., Korobeynikov, S.N., Sverdlova, V.G. et al. The influence of crustal rheology on plate subduction based on numerical modeling results. Dokl. Earth Sc. 430, 158–162 (2010). https://doi.org/10.1134/S1028334X10020029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X10020029

Keywords

Navigation