Skip to main content
Log in

Computer modeling of granite magma diapirism in the Earth’s crust

  • Geochemistry
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

A new point of view describing processes of partial melting and development of gravitational instability in a thickening crust with increased thickness of the granite layer is suggested. Numeral experiments support the following main conclusions. The critical volume of partially melted material should be formed for the beginning of flotation in a gravitational field. Due to model estimations, the height of the melting area in the granite crust should be not less than 6–7 km. A mushroom-shaped form of the floating body was observed in all models regardless of the thermal source size (fixed or variable width): the high temperature channel (magma leader) and head body of the diapir are formed. The height of diapir floating depends on rheological features of the surrounding crust: 10 times increase in the yield strength (from 1 to 10 MPa) while temperature decrease confines the possible level of rising to a depth of 15–16 km. An elevation of about 750 m is formed in the day surface relief above the axis part of the diapir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Korobeynikov, V. V. Reverdatto, O. P. Polyansky, et al., Sib. Zhurn. Vychisl. Matem. 12(1), 71–90 (2009) [in Russian].

    Google Scholar 

  2. V. V. Reverdatto, V. N. Sharapov, and R. M. Slobodskoy, Contrib. Mineral. Petrol. 36, 195–206 (1972).

    Article  Google Scholar 

  3. S. N. Korobeynikov, O. P. Polyansky, V. G. Sverdlova, et al., Dokl. Earth Sci. 421(5), 724–730 (2008) [Dokl. Akad. Nauk 420 (5), 654–658 (2008)].

    Article  Google Scholar 

  4. A. V. Babichev, I. S. Novikov, O. P. Polyanskii, et al., Geol. Geofiz. 50(2), 137–151 (2009).

    Google Scholar 

  5. Marc User’s Manual, Vol. A: Theory and Users Information (MSC Software, Santa-Ana, 2005).

  6. C. Annen and R. S. J. Sparks, Earth Planet. Sci. Lett. 203, 937–955 (2002).

    Article  Google Scholar 

  7. M. W. Schmidt and S. Poli, Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  8. M. R. Handy, Tectonophysics 163, 119–152 (1989).

    Article  Google Scholar 

  9. T. V. Gerya and J.-P. Burg, Phys. Earth Planet. Inter. 160, 124–142 (2007).

    Article  Google Scholar 

  10. J. C. Arkwright, E. H. Rutter, K. H. Brodie, et al., J. Geol. Soc. 165, 639–649 (2008).

    Article  Google Scholar 

  11. B. Bos and Ch. J. Spiers, J. Geophys. Res. 107(B2), 1029 (2002).

    Article  Google Scholar 

  12. D. Bittner and H. Schmeling, Geophys. J. Intern. 123, 59–70 (1995).

    Article  Google Scholar 

  13. A. D. Nozhkin, O. M. Turkina, Yu. M. Petrov, et al., in Uranium and Thorium in Metamorphic Petrogenesis (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  14. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, et al., Geol. Geofiz. 40(9), 1305–1313 (1999).

    Google Scholar 

  15. V. A. Vernikovsky and A. E. Vernikovskaya, Geol. Geofiz. 47(1), 35–52 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.P. Polyansky, S.N. Korobeynikov, A.V. Babichev, V.V. Reverdatto, V.G. Sverdlova, 2009, published in Doklady Akademii Nauk, 2009, Vol. 429, No. 1, pp. 101–105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyansky, O.P., Korobeynikov, S.N., Babichev, A.V. et al. Computer modeling of granite magma diapirism in the Earth’s crust. Dokl. Earth Sc. 429, 1380–1384 (2009). https://doi.org/10.1134/S1028334X09080315

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X09080315

Keywords

Navigation