Skip to main content
Log in

New carbonatite complex in the western Baikal area, southern Siberian craton: Mineralogy, age, geochemistry, and petrogenesis

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

A dike–vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite–ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar–39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite–ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5–11) and carbonatite (4.5–17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9–15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelin, Y. and Zaitsev, A.N., Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 2399–2419.

    Article  Google Scholar 

  • Arzamastsev, A.A. and Mitrofanov, F.P., Paleozoic plume–lithospheric processes in northeastern Fennoscandia: evaluation of the composition of the parental mantle melts and magma generation conditions, Petrology, 2009, vol. 17, no. 3, pp. 300–313.

    Article  Google Scholar 

  • Baker, J., Peate, D., Waight, T., and Meyzen, C., Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS, Chem. Geol., 2004, vol. 211, pp. 275–303.

    Article  Google Scholar 

  • Bardina, N.Yu. and Popov, V.S., Fenites: systematics, genesis, and significance for crustal magma formation, Zap. Vses. Mineral. O-va, 1994, no. 6, pp. 1–19.

    Google Scholar 

  • Barfod, G.H., Krogstad, E.J., Frei, R., and Albarade, F. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu–Hf isotopic closure in metamorphic apatite, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 1847–1859.

    Article  Google Scholar 

  • Bell, K. and Tilton, G.R., Nd, Pb and Sr isotopic compositions of east African carbonatites: evidence for mantle mixing and plume inhomogeneity, J. Petrol., 2001, vol. 42, no. 10, pp. 1927–1945.

    Article  Google Scholar 

  • Brod, J.A., Gaspar, J.C., de Araujo, D.P., Gibson, S.A., Thompson, R.N., and Junqueira-Brod, T.C., Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics, J. Asian Earth Sci., 2001, vol. 19, pp. 265–296. Carbonates: Mineralogy and Chemistry, Reeder, R.J., Eds., Rev. Mineral., 1983, vol. 11.

    Article  Google Scholar 

  • Carlson, R.W., Czamanske, G., Fedorenko, V., and Ilupin, I., A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts, Geochem. Geophys. Geosyst., 2006, vol. 7–11, pp. 1525–2027.

    Google Scholar 

  • Cartigny, P., Harris, J.W., Phillips, D., Girad, M., and Javoy, M., Subduction-related diamonds—the evidence for a mantle-derived origin from coupled d13C–d15N determinations, Chem. Geol., 1998, vol. 147, pp. 147–159.

    Article  Google Scholar 

  • Chazot, G., Lowrey, D., Menzies, M., and Mattey, D., Oxygen isotopic composition of hydrous and anhydrous peridotites, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 161–169.

    Article  Google Scholar 

  • Chen, W., Kamenetsky, V.S., and Simonetti, A., Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada, Nature Commun., 2013, vol. 4, no. 2687.

    Google Scholar 

  • Chew, D.M., Sylvester, P.J., and Tubrett, M.N., U–Pb and Th–Pb dating of apatite by LA-ICP-MS, Chem. Geol., 2011, vol. 280, pp. 200–216.

    Article  Google Scholar 

  • Davies, G.R., Stolz, A.Z., Mahotkin, I.L., Mowell, G.M., and Pearson, D.G., Trace element and Sr–Pb–Nd–Hf evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites, J. Petrol., 2006, vol. 47, pp. 1119–1146.

    Article  Google Scholar 

  • Dawson, J.B., Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika, Nature, 1962, vol. 195, pp. 1075–1076.

    Article  Google Scholar 

  • Demény, A., Sitnikova, M.A., and Karchevsky, P.I., Stable C and O isotope compositions of carbonatite complexes of the Kola alkaline province: phoscorite–carbonatite relationships and source compositions, in Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province, Wall, F. and Zaitsev, A.N., Eds., Mineral. Soc. Ser., 2004, vol. 10, pp. 433–468.

    Google Scholar 

  • Donskaya, T.V., Bibikova, E.V., Mazukabzov, A.M., Kozakov, I.K., Gladkochub, D.P., Kirnozova, T.I., Plotkina, Yu.V., and Reznitsky, L.Z., The Primorsky granitoid complex of the western Cisbaikalia: geochronology and geodynamic typification, Russ. Geol. Geophys., 2003, vol. 44, no. 10, pp. 968–979.

    Google Scholar 

  • Droop, G.T.R., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 1987, vol. 51, no. 3, pp. 431–435.

    Article  Google Scholar 

  • Evolyutsiya yuzhnoi chasti Sibirskogo kratona v dokembrii (Precambrian evolution of the southern Siberian Craton) Sklyarov, E.V., Ed., Novosibirsk: Izd-vo SORAN, 2006.

    Google Scholar 

  • Fedorovskii, V.S., Nizhnii proterozoi Baikal’skoi gornoi oblasti (Lower Proterozoic of the Baikal Highlands), Moscow: Nauka, 1985.

    Google Scholar 

  • Faure, G., Principles of Isotope Geology, New York: Wiley, 1986.

    Google Scholar 

  • Frolov, A.A., Lapin, A.V., Tolstov, A.V., Zinchuk, N.N., Belov, S.V., and Burmistrov, A.A., Karbonatity i kimberlity (vzaimootnosheniya, minerageniya, prognoz) (Carbonatites and Kimberlites: Relations, Metallogeny, and Prediction), Moscow: NIAPriroda, 2005.

    Google Scholar 

  • Ghiorso, M.S. and Sack, R.O., Fe–Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas, Contrib. Mineral. Petrol., 1991, vol. 108, pp. 485–510.

    Article  Google Scholar 

  • Ginzburg, A.I. and Epshtein, E.M., Carbonatite deposits, in Genezis endogennykh rudnykh mestorozhdenii (Genesis of Endogenous Ore Deposits), Moscow: Nedra, 1968, pp. 152–220.

    Google Scholar 

  • Gittins, J. and Harmer, R.E., What is ferrocarbonatite? A revised classification, J. Afr. Earth Sc., 1997, vol. 25, no. 1, pp. 159–168.

    Article  Google Scholar 

  • Gladkochub, D.P., Donskaya, T.V., Ernst, R., Mazukabzov, A.M., Sklyarov, E.V., Pisarevsky, S.A., Wingate, M., and Söderlund, U., Proterozoic basic magmatism of the Siberian Craton: main stages and their geodynamic interpretation, Geotectonics, 2012, vol. 46, no. 4, pp. 273–284.

    Article  Google Scholar 

  • Ivanov, A.V., He, H., Yang, L., Nikolaeva, I.V., and Palesskii, S.V., 40Ar/39A dating of intrusive magmatism in the Angara–Taseevskaya syncline and its implication for duration of magmatism of the Siberian traps, J. Asian Earth Sci., 2009, vol. 35, pp. 1–12.

    Article  Google Scholar 

  • Iwamori, H. and Nakamura, H., Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics, Gondwana Res., 2015, no. 27, pp. 1131–1152.

    Article  Google Scholar 

  • Jacobsen, S.B. and Wasserburg, G.J., Sm–Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, no. 2, pp. 137–150.

    Article  Google Scholar 

  • Karbonatity (Carbonatites), Tuttle, O., Gittins, J., Ed., New York: Wiley Interscience, 1969.

    Google Scholar 

  • Keller, J. and Hoefs, J., Stable isotope characteristics of recent natrocarbonatite from Oldoinyo Lengai, in Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites, IAVCEI. Proc. Vulcanol., Bell, K. and Keller, J., Eds., 1995, vol. 4, pp. 113–123.

    Article  Google Scholar 

  • Kiselev, A.I., Yarmolyuk, V.V., Ivanov, A.V., and Egorov, K.N., Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui rift, Siberia: relations in spance and time, Russ. Geol. Geophys., 2014, vol. 55, no. 2, pp. 144–152.

    Article  Google Scholar 

  • Kjarsgaard, B.A., Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa, J. Petrol., 1998, vol. 39, no. 11, pp. 2061–2075.

    Article  Google Scholar 

  • Kogarko, L.N., Khenderson, M., and Foland, K., The Guli ultrabasic alkaline massif in Polar Siberia: evolution and isotope sources, Dokl. Earth Sci., 1999, vol. 364, no. 1, pp. 88–90.

    Google Scholar 

  • Kogarko, L.N., Alkaline magmatism and enriched mantle reservoirs: mechanisms, time, and depth of formation, Geochem. Int., 2006, vol. 44, no. 1, pp. 3–10.

    Article  Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Vladykin, N.V., Ivanov, V.G., Kovach, V.P., Kozlovskii, A.M., Kostitsyn, Yu.A., Kotov, A.B., and Sal’nikova, E.B., Epochs of formation, geodynamic setting, and sources of rare-metal magmatism in Central Asia, Petrology, 2002, vol. 10, no. 3, pp. 199–221.

    Google Scholar 

  • Le Bas, M.J., IUGS reclassification of the high-Mg and picritic volcanic rocks, J. Petrol., 2000, vol. 41, no. 10, pp. 1467–1470.

    Article  Google Scholar 

  • Le Bas, M.J. and Srivastava, R.K., The mineralogy and geochemistry of the Mundwara carbonatite dykes, Sirohi District, Rajasthan, India, Neues Jahrb. Mineral. Abh., 1989, vol. 160, no. 2, pp. 207–227.

    Google Scholar 

  • Le Maitre, R.W., Igneous rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, 2002. www. cambridge.org/9780521662154

    Book  Google Scholar 

  • Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.

    Article  Google Scholar 

  • Ludwig, K.R., ISOPLOT 3.75. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Cent. Sp. Publ., 2012, no. 5.

    Google Scholar 

  • Magmaticheskie gornye porody. T. 1. Klassifikatsiya, nomenklatura, petrografiya (Igneour Rocks. Volume 1. Classification, Nomenclature, and Petrography), Bogatikov, O.A., Ed., Moscow: Nauka, 1983.

    Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Meffre, S., Large, R.R., Scott, R., Woodhead, J., Chang, Z., Gilbert, S.E., Danyushevsky, L.V., Maslennikov, V., and Hergt, J.M., Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2377–2391.

    Article  Google Scholar 

  • Mitchell, R.H., Smith, C.B., and Vladykin, N.V., Isotopic composition of Sr and Nd in potassic rocks of the Little Murun Complex, Aldan Shield, Siberia, Lithos, 1994, no. 32, pp. 243–248.

    Google Scholar 

  • Nedosekova, I.L., Vladykin, N.V., Pribavkin, S.V., and Bayanova, T.B., The Il’mensky–Vishnevogorsky miaskite–carbonatite complex, the Urals, Russia: origin, ore resource potential, and sources, Geol. Ore Deposits 2009, vol. 51, no. 2, pp. 139–161.

    Google Scholar 

  • Panina, L.I. and Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts, Geochem. Int., 2008, vol. 46, no. 5, pp. 448–464.

    Article  Google Scholar 

  • Panina, L.I. and Motorina, I.V., Meimechites, porphyritic alkaline picrites, and melanephelinites of Siberia: conditions of crystallization, parental magmas, and sources, Geochem. Int., 2013, vol. 51, no. 2, pp. 109–128.

    Article  Google Scholar 

  • Panteeva, S.V., Gladkochoub, D.P., Donskaya, T.V., Markova, V.V., and Sandimirova, G.P., Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion, Spectrochim. Acta, Part B: Atomic Spectroscop., 2003, vol. 58, no. 2, pp. 341–350.

    Article  Google Scholar 

  • Pin, C., Briot, D., Bassin, C., and Poitrasson, F., Concomitant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography, Anal. Chim. Acta, 1994, vol. 298, pp. 209–217.

    Article  Google Scholar 

  • Pin, C. and Zalduegui, J.F.S., Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks, Anal. Chim. Acta, 1997, vol. 339, pp. 79–89.

    Article  Google Scholar 

  • Ray, J.S., Pande, K., Bhutani, R., Shukla, A.D., Rai, V.K., Kumar, A., Awasthi, N., Smitha, R.S., and Panda, D.K., Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1613–1632.

    Article  Google Scholar 

  • Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., and Min, K., Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constant and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010), Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 5097–5100.

    Article  Google Scholar 

  • Ripp, G.S., Badmatsyrenov, M.V., Doroshkevich, A.G., and Izbrodin, I.A., New carbonatite-bearing area in northern Transbaikalia, Petrology, 2005, vol. 13, no. 5, pp. 489–498.

    Google Scholar 

  • Rudnick, A.W., Composition of the continental crust, in Treatise on Geochemistry. Volume 3. The Crust, Holland, H.D. and Turekian, K.K., Eds., Amsterdam: Elsevier, 2002, pp. 1–64.

    Google Scholar 

  • Salomons, W., Chemical and isotopic composition of carbonatites in recent sediments and soils from Western Europe, J. Sediment. Petrol., 1975, vol. 45, no. 2, pp. 440–449.

    Google Scholar 

  • Savel’eva, V.B., Bazarova, E.P., and Danilov, B.S., New finds of carbonatite-like rocks in the Western Baikal Region, Dokl. Earth Sci., 2014, vol. 459, no. 4, pp. 1483–1488.

    Article  Google Scholar 

  • Schoene, B. and Bowring, S.A., U–Pb systematics of the McClure mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 615–630.

    Article  Google Scholar 

  • Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Malitch, K.N., and Petrunin, A.G., Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 999–1033.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., and Kjarsgaard, B.A., Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications, J. Petrol., 2005, vol. 46, no. 9, pp. 1893–1900.

    Article  Google Scholar 

  • Ustinov, V.I. and Rybakov, V.G., Lower Proterozoic stratigraphy of the central Western Transbaikalia, in Stratigrafiya dokembriya regiona srednei Sibiri (Precambrian Straigraphy of the Middle Siberia), Leningrad: Nauka, 1983, pp. 60–65.

    Google Scholar 

  • Vladykin, N.V., Potassium alkaline lamproite–carbonatite complexes: petrology, genesis, and ore reserves, Russ. Geol. Geophys., 2009, vol. 50, no. 12, pp. 1119–1128.

    Article  Google Scholar 

  • Vrublevskii, V.V., Pokrovskii, B.G., Zhuravlev, D.Z., and Anoshin, G.N., Composition and age of the Penchenga linear carbonatite complex, Yenisei Range, Petrology, 2003, vol. 11, no. 2, pp. 130–146.

    Google Scholar 

  • Woolley, A.R. and Kempe, D.R.C., Carbonatite: nomenclature, average chemical compositions, and element distributions, in Carbonatites: Genesis and Evolution, London: Unwin Hyman, 1989.

    Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova, E.B., Nikiforov, A.V., Kotov, A.B., and Vladykin, N.V., U–Pb age of synand postmetamorphic granitoids of South Mongolia: evidence for the presence of Grenvillides in the Central Asian Foldbelt, Dokl. Earth Sci., 2005, vol. 404, no. 3, pp. 400–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Savelyeva.

Additional information

Original Russian Text © V.B. Savelyeva, E.I. Demonterova, Yu.V. Danilova, E.P. Bazarova, A.V. Ivanov, V.S. Kamenetsky, 2016, published in Petrologiya, 2016, Vol. 24, No. 3, pp. 292–324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, V.B., Demonterova, E.I., Danilova, Y.V. et al. New carbonatite complex in the western Baikal area, southern Siberian craton: Mineralogy, age, geochemistry, and petrogenesis. Petrology 24, 271–302 (2016). https://doi.org/10.1134/S0869591116030061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591116030061

Keywords

Navigation