Skip to main content
Log in

Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Consideration of the existence of hydrosilicate liquids (HSL) in nature can help in understanding the accumulation and transport of some mineral- and ore-forming components at the transition from magmas to hydrothermal fluids. We studied the experimental formation of HSL using a base system Na2O-SiO2-H2O with addition of NaF, NaCl and metallic Ta. The interaction between quartz and aqueous solution, performed at 1.5 kbar and 600°C and followed either by cooling or by quench, showed that the formation of HSL occurred when initial Na2O exceeded 2 wt %. Neither NaF nor NaCl have a significant effect on the formation of HSL. The HSL concentrates F, whereas Cl partitions into the aqueous fluid. With addition of Ta to the system, the HSL becomes metal-enriched. Natural analogs of experimental HSL can be found among “melt/fluid” inclusions entrapped in quartz and other minerals of miaroles in granite pegmatites and raremetal granites. The HSL is a novel medium enabling extreme concentrations of lithophile ore metals at the magmatic-hydrothermal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfilogov, V.N., Abramov, V.A., Kovalenko, V.I., and Ogorodova, V.Y., Phase Relations in Agpaitic Area of the System Na2O-K2O-Al2O3-SiO2-H2O at Pressure 1000 kg/cm2, Dokl. Akad. Nauk SSSR, 1972, vol. 204, pp. 944–947.

    Google Scholar 

  • Audetat, A., Gunther, D., and Heinrich, C.A., MagmaticHydrothermal Evolution in a Fractionating Granite: A Microchemical Study of the Sn-W-F-Mineralized Mole Granite (Australia), Geochim. Cosmochim. Acta, 2000, vol. 64, no. 19, pp. 3373–3393.

    Article  Google Scholar 

  • Bailey, D.K. and Macdonald, R., Alkali-Feldspar Fractionation Trends and Deviation of Peralkaline Liquid, Am. J. Sci., 1969, vol. 267, no. 2, pp. 242–248.

    Article  Google Scholar 

  • Balitsky, V.S., Kurashige, M., Balitskaya, L.V., and Iwasaki, W., Study of Quartz Solubility and “Heavy” Phase Formation under Industrial Synthetic Quartz Growth Conditions, Proc. of Joint ISHR&ICSTR, Kochi: Kochi Univ., 2000, pp. 318–321.

    Google Scholar 

  • Barnes, H.L., Solubilities of Ore Minerals, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: John Wiley and Sons, 1979, pp. 404–459.

    Google Scholar 

  • Bureau, H. and Keppler, H., Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications, Earth Planet. Sci. Lett., 1999, vol. 165, no. 2, pp. 187–196.

    Article  Google Scholar 

  • Burnham, C.V., Magmas and Hydrothermal Fluids, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed, New York: John Wiley and Sons, 1979, pp. 71–136.

    Google Scholar 

  • Butuzov, V.P. and Bryatov, L.V., Study of Phase Equilibria of the Part of the System H2O-SiO2-Na2CO3 at High Temperatures and Pressures, Crystallography, 1957, vol. 2, pp. 670–675.

    Google Scholar 

  • Chevychelov, V.Y., Zaraysky, G.P., and Borodulin, G.P., Experimental Study of Effect of a Melt Alkalinity, Temperature and Pressure on Solbility of Rare Elements (Ta and Nb) in Granitoid Melt., in Proc. of Alkaline Magmatism of the Earth and Its Ore Potential, Donetsk, 2007, PP. 259–263.

  • Duc-Tin, Q., Audetat, A., and Keppler, H., Solubility of tin in (Cl, F)-Bearing Aqueous Fluids at 700°C, 140 MPa: A LA-ICP-MS Study of Syntehtic Fluid Inclusions, Geochim. Cosmochim. Acta, 2007, vol. 71, no. 13, pp. 3323–3335.

    Article  Google Scholar 

  • Foner, H.A. and Gal, I., Accurate Spectrophotometric Method for the Determination of Silica in Rocks, Minerals and Related Materials, Analyst, 1981, vol. 106, pp. 521–528.

    Article  Google Scholar 

  • Ganeev, I.G. and Rumyantsev, V.N.,On the Nature of Immiscibility in the System H2O-SiO2-NaOH at Elevated Pressures and Temperatures, Neorg. Mater., 1971, vol. 7, no. 12, pp. 2191–2194.

    Google Scholar 

  • Glyuk, D.S. and Trufanova, L.G., Melting in the System Granite-H2O with Addition of HF, HCl, Fluorides, Chlorides and Hydroxides of Lithium, Sodium and Potassium under Pressure 1000 kg/cm3, Geokhimiya, 1977, vol. 7, pp. 1003–1012.

    Google Scholar 

  • Halter, W.E. and Webster, J.D., The Magmatic to Hydrothermal Transition and Its Bearing on Ore-Forming Systems-Preface, Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 1–6.

    Article  Google Scholar 

  • Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, New York: Wiley-Interscience Publication, 1979.

    Google Scholar 

  • Jeffrey, P.G., Chemical Methods of Rock Analysis, Oxford: Pergamon Press, 1970.

    Google Scholar 

  • Kamenetsky, V.S., Naumov, V.B., Davidson, P., van Achterbergh, E., and Ryan, C.G., Immiscibility between Silicate Magmas and Aqueous Fluids: a Melt Inclusion Pursuit into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia), Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 73–90.

    Article  Google Scholar 

  • Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.C., The Upper Three-Phase Region in the System SiO2-H2O, Am. J. Sci., 1962, vol. 260, pp. 501–521.

    Article  Google Scholar 

  • Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., and Thompson, A.B., The Water-Basalt System at 4 to 6 GPa: Phase Relations and Second Critical Endpoint in K-Free Eclogite at 700 to 140°C, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 873–892.

    Article  Google Scholar 

  • Korotayev, M.Y. and Kravchuk, K.G., Hetrophase State of Hydrothermal Solutions under Endogeneous Mineral Forming Conditions, Preprint of Institute of Experimental Mineralogy of USSR Academy of Science, Chernogolovka, 1985.

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Experimental Study of Heterogeneous Fluid Equilibria in Silicate-Salt-Water Systems, Geol. Ore Dep., 2010a, vol. 52, no. 2, pp. 154–166.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Immiscibility in Sulfate-Bearing Fluid Systems at High Temperatures and Pressures, Geochem. Int., 2010b, vol. 48, no. 4, pp. 381–389.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Liquid Separation in the Presence of Vapor in Synthetic Fluid Inclusions Obtained from Na2CO3 Solutions, Dokl. Earth Sci., 2009, vol. 429, no. 2, pp. 1533–1535.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Method of Synthetic Fluid Inclusions in Quartz in Experimental Study of the Water-Sodium Sulfate System, Geol. Ore Dep., 2009, vol. 51, no. 1, pp. 68–73.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Synthetic NaF-bearing Fluid Inclusions in Quartz Syntehsized at 450–500°C and P = 500–2000 Bar, Geochem. Int., 2004, vol. 42, no. 8, pp. 794–798.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., NaF-bearing Fluids: Experimental Investigation at 500–800°C and P = 2000 bar using Synthetic Fluid Inclusions in Quartz, Geochem. Int., 2008, vol. 46, no. 1, pp. 48–61.

    Article  Google Scholar 

  • Kotelnikova, Z.A. and Kotelnikov, A.R., Synthetic NaF-Bearing Fluid Inclusions, Geochem. Int., 2002, vol. 40, no. 6, pp. 594–600.

    Google Scholar 

  • Kravchuk, K.G. and Valyashko, V.M., Equilibrium Diagram of the System Na2O-SiO2-H2O, in Methods of Experimental Investigations of Hydrothermal Equilibria, Godovikov, A.A., Ed., Novosibirsk: Nauka, 1979, pp. 105–117.

    Google Scholar 

  • Kravchuk, K.G., Phase Equilibria in the System SiO2-Na2O-H2O in Wide Range of Temperatures and Pressures, Cand. Diss. Sci. (Geol.-Min.) Moscow: Inst. Org. Inorg. Chem. USSR Academy of Science, 1979.

    Google Scholar 

  • Lineveawer, J.L., Oxygen Outgasing Caused by the Electron Bombardment of Glass, J. Appl. Phys., 1962, no. 34, pp. 1786–1791.

  • Lowenstern, J.B., Chlorine, Fluid Immiscibility, and Degassing in Peralkaline Magmas from Pantelleria, Italy, Am. Mineral., 1994, vol. 79, nos. 3–4, pp. 353–369.

    Google Scholar 

  • Morey, G.W. and Fenner, C.N., The Ternary System H2O-K2SiO3-SiO2, J. Am. Chem. Soc., 1917, vol. 39, pp. 1173–1229.

    Article  Google Scholar 

  • Morey, G.W. and Fleischer, M., Equilibrium between Vapor and Liquid Phases in the System CO2-H2O-K2O-SiO2, Geol. Soc. Am. Bull., 1940, vol. 51, pp. 1035–1058.

    Google Scholar 

  • Morgan, G.B. and London, D., Effect of Current Density on the Electron Microprobe Analysis of Alkali Aluminosilicate Glasses, Am. Mineral., 2005, vol. 90, no. 7, pp. 1131–1138.

    Article  Google Scholar 

  • Mustart, D.A., Phase Relations in the Peralkaline Portion of the System Na2O-Al2O3-SiO2-H2O, Cand. Sci. (Chem.) Dissertation, Stanford: Stanford University, 1972.

    Google Scholar 

  • Peretyazhko, I.S., Smirnov, S.Z., Kotel’nikov, A.R., and Kotel’nikova, Z.A., Experimental Study of the System HBO3-NaF-SiO2-H2O at 350–800°C and 1–2 kbar by the Method of Syntehtic Fluid Inclusions, Russ. Geol. Geophys., 2010, vol. 51, no. 4, pp. 349–368.

    Article  Google Scholar 

  • Peretyazhko, I.S., Smirnov, S.Z., Thomas, V.G., and Zagorsky, V.Y., Gels and Melt-Like Gels in Endogenous Mineral Formation, in Metallogeny of the Pacific North West: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Khanchuk, A.I., Gonevchuk, G.A., Mitrokhin, A.N., et al., Ed., Vladivostok: Dal’nauka, 2004a, pp. 306–309.

    Google Scholar 

  • Peretyazhko, I.S., Zagorsky, V.Y., Smirnov, S.Z., and Mikhailov, M.Y., Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan field, Central Transbaikalia, Russia), Chem. Geol., 2004b, vol. 210, nos. 1–4, pp. 91–111.

    Article  Google Scholar 

  • Rankin, A.H., Ramsey, M.H., Coles, B., Vanlangevelde, F., and Thomas, C.R., The Composition of Hypersaline, Iron-Rich Granitic Fluids Based on Laser-ICP and Synchrotron-XRF Microprobe Analysis of Individual Fluid Inclusions in Topaz, Mole Granite, Eastern Australia, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 1, pp. 67–79.

    Article  Google Scholar 

  • Rickers, K., Thomas, R., and Heinrich, W., The Behavior of Trace Elements during the Chemical Evolution of the H2O, B, and F-Rich Granite-Pegmatite-Hydrothermal System at Ehrenfriedersdorf, Germany, a SXRF Study of melt and Fluid Inclusions, Miner. Deposita, 2006, vol. 41, no. 3, pp. 229–245.

    Article  Google Scholar 

  • Roedder, E., Fluid Inclusion Evidence for Immiscibility in Magmatic Differentiation, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 1, 5–20.

    Article  Google Scholar 

  • Rowe, J.J., Fournier, R.O., and Morey, G.W., System Water-Sodium Oxide-Silicon Dioxide at 200, 250, amd 300°C, Inorg. Chem., 1967, no. 6, pp. 1183–1188.

  • Rumyantsev, V.N., Structure of Crystal-Forming Medium and Hydrothermal Growth of Quartz in Aqueous NaOH-Solutions, in Proceedings of 4th International Conference “Crystals: Growth, Properties, Real Structure and Application,” Alexandrov: VNIISIMS, 1999, pp. 16–38.

  • Schmidt, M.W., Vielzeuf, D., and Auzennau, E., Melting and Dissolution of Subducting Crust at High Pressures: the Key Role of White Mica, Earth Planet. Sci. Lett., 2004, vol. 228, pp. 65–84.

    Article  Google Scholar 

  • Shinohara, H., Exsolution of Immiscible Vapor and Liquid Phases from a Crystallizing Silicate Melt: Implications for Chlorine and Metal Transport, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 5215–5222.

    Article  Google Scholar 

  • Simakin, A.G., Salova, T.P., and Zavelsky, V.O., Mechanism of Water Dissolution in Sodium-Silicate Melts and Glasses: Structural Interpretation of Spectroscopic Data., Geochem. Int., 2008, vol. 46, no. 2, pp. 107–115.

    Article  Google Scholar 

  • Smirnov, S.Z., Peretyazhko, I.S., Zagorsky, V.E., and Mikhailov, M.Y., Inclusions of Unusual Late Magmatic Melts in Quartz from the Oktyabr’skaya Pegmatite Vein, Malkhan Field (Central Transbaikal Region), Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 999–1003.

    Google Scholar 

  • Smirnov, S.Z., Thomas, V.G., Demin, S.P., and Drebushchak, V.A., Experimental Study of Boron Solubility and Speciation in the Na2O-B2O3-SiO2-H2O System, Chem. Geol., 2005, vol. 223, nos. 1–3, pp. 16–34.

    Article  Google Scholar 

  • Solovova, I.P., Girnis, A.V., Naumov, V.B., Kovalenko, V.I., and Guzhova, A.V., The Degassing Mechanism of Acid Magma Formation of the 2 Fluid Phases under Crystallization of Pantellerites of the Pantelleria Island, Dokl. Alad Nauk SSSR, 1991, vol. 320, no. 4, pp. 982–985.

    Google Scholar 

  • Sowerby, J.R. and Keppler, H., The Effect of Fluorine, Boron and Excess Sodium on the Critical Curve in the Albite-H2O Systen, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 32–37.

    Article  Google Scholar 

  • Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Rickers, K., Forster, H.J., Heinrich, W., and Davidson, P., The Transition from Peraluminous to Peralkaline Granitic Melts: Evidence from Melt Inclusions and Accessory Minerals, Lithos, 2006, vol. 91, nos. 1–4, pp. 137–149.

    Article  Google Scholar 

  • Tuttle, O.F. and Friedman, I.I., Soda-SIlica-Water System in the Optimum Region for Quartz Synthesis, Geol. Soc. Am. Bull., 1946, vol. 57, no. 12, pp. 1286–1287.

    Google Scholar 

  • Veksler, I.V., Thomas, R., and Schmidt, C., Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite, Am. Mineral., 2002, vol. 87, nos. 5–6, pp. 775–779.

    Google Scholar 

  • Webster, J.D., Exsolution of Magmatic Volatile Phases from Cl-Enriched Mineralizing Granitic Magmas and Implications for Ore Metal Transport, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 5, pp. 1017–1029.

    Article  Google Scholar 

  • Wilkinson, J.J., Nolan, J., and Rankin, A.H., Silicothermal Fluid: a Novel Medium for Mass Transport in the Lithosphere, Geology, 1996, vol. 24, no. 12, pp. 1059–1062.

    Article  Google Scholar 

  • Yardley, B.W.D., Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation, Econ. Geol., 2005, vol. 100, no. 4, pp. 613–632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Smirnov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, S.Z., Thomas, V.G., Kamenetsky, V.S. et al. Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P . Petrology 20, 271–285 (2012). https://doi.org/10.1134/S0869591112020063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112020063

Keywords

Navigation