Skip to main content
Log in

Genesis of mineralized cavities (Miaroles) in granitic pegmatites and granites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Analysis the development of large fluid segregations in a flux of small fluid bubbles during the degassing of granitic (pegmatitic) melts indicates that the velocity of the buoyant ascent of fluid bubbles depends on their sizes, the viscosity and density of the melts, and the duration of melt flow. Possible variants of the primary and secondary boiling of magma are discussed depending on the P-T conditions and concentrations of H2O, F, B, and other components dissolved in the magma. The possible density ranges of the fluid phases are considered, along with the viscosity and density of granitic (pegmatitic) melts, velocities of the buoyant ascent of fluid bubbles in them, and the processes of their coalescence and accumulation in the temperature range of 650–850°C. Provisional evaluates are obtained for the duration of melt crystallization and the development of intrusive massifs and dikes of granites and syngenetic intragranite and epigenetic (intruded into the host rocks) granite pegmatites. Simulation data and geological observations suggest that large fluid segregations were formed already in the magma chambers in which the heterogeneous granite (pegmatitic) magma was derived, before its emplacement into the host rocks. These generation regions could be magma chamber areas within granite intrusions, in which melts enriched in volatiles were accumulated and then degassed with the release of fluid phases of various composition and density. The crystallization of fluid-rich melts under favorable conditions gives rise to granites with miarolitic structures. The emplacement of heterogeneous pegmatitic magma (which consists of immiscible silicate melts and large fluid segregations) into the host rocks results in that these segregations (would-be miaroles) occur in any part of the pegmatite-hosting chamber. This explains why miaroles of significantly different composition and with broadly varying proportions of their filling minerals may occur in various parts of pegmatite veins or their swells, as well as near contacts with the host rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Abramov, “Formation of Fluorine-Rich Magmas by Fluid Filtration through Silicic Magmas: Petrological and Geochemical Evidence of Metamagmatism,” Petrologiya 12(1), 22–45 (2004) [Petrology 12, 17–36 (2004)].

    Google Scholar 

  2. O. Bachmann and G. W. Bergantz, “On the Origin of Crystal-Poor Rhyolites Extracted from Batholithic Crystal Mushes,” J. Petrol. 45, 1565–1582 (2004).

    Article  Google Scholar 

  3. D. R. Baker, “Granitic Melt Viscosities: Empirical and Configurational Entropy Models for Their Calculation,” Amer. Mineral. 81, 126–134 (1996).

    Google Scholar 

  4. D. R. Baker, P. Lang, G. Robert, J-F. Bergevin, E. Allard, and L. Bai, “Bubble Growth in Slightly Supersaturated Albite Melt at Constant Pressure,” Geochim. Cosmochim. Acta 70, 1821–1838 (2006).

    Article  Google Scholar 

  5. D. R. Baker and J. Vaillancourt, “The Low Viscosities of F and H2O-Bearing Granitic Melts and Implications for Melt Extraction and Transport,” Earth Planet. Sci. Lett. 132, 199–211 (1995).

    Article  Google Scholar 

  6. V. N. Balashov, G. P. Zaraiskii, and R. Zel’tman, “Fluid-Magma Interaction and Oscillatory Phenomena during Crystallization of Granitic Melt by Accumulation and Escape of Water and Fluorine,” Petrologiya 8(6), 563–585 (2000) [Petrology 8, 505–524 (2000)].

    Google Scholar 

  7. Y. Bottinga and D. F. Weill, “Densities of Liquid Silicate Systems Calculated from Partial Molar Volumes of Oxide Components,” Amer. J. Sci. 269, 169–182 (1970).

    Google Scholar 

  8. E. Bourgue and P. Richet, “The Effects of Dissolved CO2 on the Density and Viscosity of Silicate Melts: A Preliminary Study,” Earth Planet. Sci. Lett. 193, 57–68 (2001).

    Article  Google Scholar 

  9. G. Brandeis and C. Jaupart, “On the Interaction between Convection and Crystallization in a Cooling Magma Chamber,” Earth Plan. Sci. Lett. 77, 345–361 (1986).

    Article  Google Scholar 

  10. G. Brandeis and B. D. Marsh, “The Convection Liquidus in a Solidifying Magma Chamber: A Fluid Dynamic Investigation,” Nature 339(6226), 613–616 (1989).

    Article  Google Scholar 

  11. C. W. Burnham and H. Ohmoto, “Late-Stage Processes of Felsic Magmatism,” Mining Geology. Spec. issue, No. 8, 1–11 (1980).

  12. P. A. Candela and S. L. Blevin, “Do Some Miarolitic Granites Preserve Evidence of Magmatic Volatile Phase Permeability,” Econ. Geol. 90, 2310–2316 (1995).

    Article  Google Scholar 

  13. G.-N. Chen and R. Grapes, Granite Genesis: In situ Melting and Crustal Evolution (Springer-Verlag, Berlin-Heidelberg-Dordrecht, 2007).

    Book  Google Scholar 

  14. D. B. Dingwell, K. U. Hess, and R. Knoche, “Granite and Granitic Pegmatite Melts: Volumes and Viscosities,” R. Soc. Edinburgh Trans. Earth Sci. 87, 65–72 (1996b).

    Google Scholar 

  15. D. B. Dingwell, R. Knoche, S. L. Webb, and M. Pichavant, “The Effect of B2O3 on the Viscosity of Haplogranitic Melts,” Am. Mineral. 77, 457–461 (1992).

    Google Scholar 

  16. D. B. Dingwell, M. Pichavant, and F. Holtz, “Experimental Studies of Boron in Granitic Melts,” in Boron: Mineralogy, Petrology and Geochemistry, Ed. by E. S. Grew and L. M. Anovitz, Rev. Mineral. 33, 331–385 (1996a).

  17. N. L. Dobretsov, A. G. Kidryashkin, and A. A. Kidryashkin, Deep Geodynamics (SO RAN, Fil. TGEOU, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  18. J. E. Gardner, “Bubble Coalescence in Rhyolitic Melts during Decompression from High Pressure,” J. Volcanol. Geotherm. Res. 166, 161–176 (2007a).

    Article  Google Scholar 

  19. J. E. Gardner, “Heterogeneous Bubble Nucleation in Highly Viscous Silicate Melts during Instantaneous Decompression from High Pressure,” Chem. Geol. 236, 1–12 (2007b).

    Article  Google Scholar 

  20. J. E. Gardner and M.-H. Denis, “Heterogeneous Bubble Nucleation on Fe-Ti Crystals in High-Silica Rhyolitic Melts,” Geochim. Cosmochim. Acta 68, 3587–3597 (2004).

    Article  Google Scholar 

  21. J. E. Gardner, M. Hilton, and M. R. Carrol, “Bubble Growth in Highly Viscous Silicate Melts during Continuous Decompression from High Pressure,” Geochim. Cosmochim. Acta. 64, 1473–1483 (2000).

    Article  Google Scholar 

  22. D. Giordano, C. Romano, D. B. Dingwell, B. Poe, and H. Behrens, “The Combined Effects of Water and Fluorine on the Viscosity of Silicic Magmas,” Geochim. Cosmochim. Acta. 68, 5159–5168 (2004).

    Article  Google Scholar 

  23. V. S. Golubev and V. N. Sharapov, Dynamics of Endogenous Ore Formation (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  24. I. Haapala, “Magmatic and Postmagmatic Processes in Tin-Mineralized Granites: Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland,” J. Petrol. 38, 1654–1659 (1997).

    Article  Google Scholar 

  25. K. U. Hess and D. B. Dingwell, “Viscosities of Hydrous Leucogranitic Melts: A Non-Arrhenian Model,” Am. Mineral. 81, 1297–1300 (1996).

    Google Scholar 

  26. F. Holtz, H. Behrens, and D. B. Dingwell, “The Effects of F, B2O3 and P2O5 on the Solubility of Water in Haplogranitic Melts Compared to Silicate Melts,” Contrib. Mineral. Petrol. 113, 492–501 (1993).

    Article  Google Scholar 

  27. F. Holtz, W. Johannes, N. Tamic, H. Behrens, “Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: An Evaluation and Implications,” Lithos 56, 1–14 (2001).

    Article  Google Scholar 

  28. S. Hurwitz and O. Navon, “Bubble Nucleation in Rhyolitic Melts: Experiments at High Pressure, Temperature and Water Content,” Earth Planet. Sci. Lett. 122, 267–280 (1994).

    Article  Google Scholar 

  29. J. C. Jaeger, “Cooling and Solidification of Igneous Rocks,” in Basalts, The Poldervaart Treatise on Rocks of Basaltic Composition, Ed. by au]H. H. Hess and A. Poldervaart (Wiley, New York, 1968), pp. 503–537.

    Google Scholar 

  30. R. H. Jahns and C. M. Burnham, “Experimental Studies of Pegmatite Genesis. I. A Model of the Derivation and Crystallization of Granitic Pegmatites,” Econ. Geol. 64, 843–864 (1969).

    Article  Google Scholar 

  31. A. S. Kalinin and E. N. Vasil’eva, “Convection of Melts in Vertical Magmatic Chambers,” Dokl. Akad. Nauk SSSR 210(6), 1435–1438 (1973).

    Google Scholar 

  32. R. Knoche, D. B. Dingwell, and S. L. Webb, “Melt Densities for Leucogranites and Granitic Pegmatites: Partial Molar Volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3,” Geochim. Cosmochim. Acta 59, 4645–4652 (1995).

    Article  Google Scholar 

  33. O. N. Kosukhin, I. T. Bakumenko, and V. P. Chupin, Magmatic Stage of the Formation of Granite Pegmatites (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  34. T. Kuritani, T. Yokoyama, and E. Nakamura, “Rates of Thermal and Chemical Evolution of Magmas in Cooling Magma Chamber: A Chronological and Theoretical Study on Basaltic and Andesitic Lavas from Rishiri Volcano, Japan,” J. Petrol. 48, 1295–1319 (2007).

    Article  Google Scholar 

  35. R. A. Lange, “The Effects of H2O, CO2 and F on the Density and Viscosity of Silicate melts,” Rev. Mineral. 30, 331–369 (1994).

    Google Scholar 

  36. R. A. Lange and I. S. E. Carmichael, “Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 Liquids: New Measurements and Derived Partial Molar Properties,” Geochim. Cosmochim. Acta 53, 2195–2204 (1987).

    Article  Google Scholar 

  37. J. F. Larsen, “Heterogeneous Bubble Nucleation and Disequlibrium H2O Exsolution in Vesuvius K-phonolite Melts,” J. Volcanol. Geotherm. Res. 175, 278–288 (2008).

    Article  Google Scholar 

  38. J. F. Larsen, M-H. Denis, and J. E. Gadner, “Experimental Study of Bubble Coalescence in Rhyolitic and Phonolitic Melts,” Geochim. Cosmochim. Acta. 68(2), 333–344 (2004).

    Article  Google Scholar 

  39. D. London, Pegmatites, Can. Mineral. Spec. Publ. 10, (2008).

  40. D. London, “The Magmatic-Hydrothermal Transition in the Tanco Rare-Element Pegmatite: Evidence from Fluid Inclusions and Phase Equilibrium Experiments,” Am. Mineral. 71, 376–395 (1986).

    Google Scholar 

  41. J. B. Lowenstern, “Dissolved Volatile Concentrations in an Ore-Forming Magma,” Geology 22, 893–896 (1994).

    Article  Google Scholar 

  42. V. Lyakhovsky, S. Hurwitz, and O. Navon, “Bubble Growth in Rhyolitic Melts: Experimental and Numerical Investigation,” Bull. Volcanol. 58, 19–32 (1996).

    Article  Google Scholar 

  43. V. I. Mal’kovskii, A. A. Pek, A. P. Aleshin, and V. I. Velichkin, “Estimation of the Time of Magma Chamber Solidification beneath the Strel’tsovka Caldera and Its Effect on the Nonstationary Temperature Distribution in the Upper Crust, the Eastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 50(3), 217–224 (2008) [Geol. Ore Dep. 50, 192–198 (2008)].

    Google Scholar 

  44. D. A. C. Manning and M. Pichavant, “The Role of F and B in the Generation of Granitic Melts,” in Migmatites, Melting and Metamorphism, Ed. by M. P. Atherton and C. D. Gribble, (Shiva Geology Series, Glasgow, 1983).

    Google Scholar 

  45. Y. Morizet, A. R. L. Nichols, S. C. Kohn, R. A. Brooker, and D. B. Dingwell, “The Influence of H2O and CO2 on the Glass Transition Temperature: Insights into the Effects of Volatiles on Magma Viscosity,” Eur. J. Mineral. 19, 657–669 (2007).

    Article  Google Scholar 

  46. C. C. Mourtada-Bonnefoi and D. Laporte, “Kinetics of Bubble Nucleation in Rhyolitic Melt: An Experimental Study of Effect of Ascent Rate,” Earth Planet. Sci. Lett. 218, 521–537 (2004).

    Article  Google Scholar 

  47. V. B. Naumov and G. B. Naumov, “Mineral-Forming Fluids and Physicochemical Regularities of their Evolution,” Geokhimiya, No. 10, 1450–1460 (1980).

  48. F. A. Ochs and R. A. Lange, “The Density of Hydrous Magmatic Liquids,” Science 283, 1314–1317 (1999).

    Article  Google Scholar 

  49. F. A. Och and R. A. Lange, “The Partial Molar Volume, Thermal Expansivity, and Compressibility of H2O in NaAlSi3O8 Liquid: New Measurements and an Internally Consistent Model,” Contrib. Mineral. Petrol. 179, 155–165 (1997).

    Google Scholar 

  50. T. Ohtani, T. Nakano, Y. Nakashima, and H. Muraoka, “Three-Dimension Shape Analysis of Miarolitic Cavities in the Kakkonda Granite by X-Ray Computed Tomography,” J. Struct. Geol. 23, 1441–1754 (2001).

    Article  Google Scholar 

  51. K. E. Perepelkin and V. S. Matveev, Gas Emulsion (Khimiya, Leningrad, 1979) [in Russian].

    Google Scholar 

  52. I. S. Peretyazhko, S. Z. Smirnov, V. G. Thomas, and V. Ye. Zagorsky, “Gels and Melt-Like Gels in High-Temperature Endogenous Formation,” in Proceedings of the In. IAGOD Conference, Vladivostok, Russia, 2004 (Vladivostok, 2004a), pp. 306–309.

  53. I. S. Peretyazhko, V. Ye. Zagorsky, S. Z. Smirnov, and M. Y. Mikhailov, “Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan Field, Central Transbaikalia, Russia),” Chem. Geol. 210, 91–111 (2004b).

    Article  Google Scholar 

  54. I. S. Peretyazhko and V. E. Zagorsky, “The Influence of H3BO3 on Fluid Pressure in Granitic Pegmatite Miaroles: A Computation of Isochores and the Density of Boric Acid Solutions,” Dokl. Akad. Nauk 383(6), 812–817 (2002) [Dokl. Earth Sci. 383, 340–345 (2002)].

    Google Scholar 

  55. I. S. Peretyazhko, “Inclusions of Magmatic Fluids: P-V-T-X Properties of Aqueous Salt Solutions of Various Types and Petrological Implications,” Petrologiya 17(2), 197–221 (2009) [Petrology 17, 187–201 (2009)].

    Google Scholar 

  56. I. S. Peretyazhko, V. Yu. Prokof’ev, V. E. Zagorsky, and S. Z. Smirnov, “Role of Boric Acids in the Formation of Pegmatite and Hydrothermal Minerals: Petrologic Consequences of Sassolite (H3BO3) Discovery in Fluid Inclusions,” Petrologiya 8(3), 241–266 (2000) [Petrology 8, 214–237 (2000)].

    Google Scholar 

  57. E. S. Persikov, Viscosity of Magmatic Melts (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  58. A. R. Philpotts and M. Carroll, “Physical Properties of Partly Melted Tholeiitic Basalt,” Geology 24, 1029–1032 (1996).

    Article  Google Scholar 

  59. P. M. Piccoli, P. A. Candela, P. J. Jugo, and M. R. Frank, “Contrasting Syn-Late Magmatic Intrusive Behavior of Aplite Dikes in the Tuolumne Intrusive Suite, California: Implications for Magma Rheology,” in Cordilleran Section of the Geological Society of America (a Symposium in Honor of Paul Bateman) 28, 101 (1996).

    Google Scholar 

  60. M. Pichavant, “An Experimental Study of the Effect of Boron on a Water Saturated Haplogranite at 1 Kbar Vapour Pressure,” Contrib. Mineral. Petrol. 76, 430–439 (1981).

    Article  Google Scholar 

  61. M. Pichavant, “Effects of B and H2O on Liquidus Phase Relations in the Haplogranite System at 1 Kbar,” Am. Mineral. 72, 1056–1070 (1987).

    Google Scholar 

  62. F. G. Reif, Ore-Forming Potential of Granites and Conditions of its Realization (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  63. P. Richet, A. Whittington, F. Holtz, H. Behrens, S. Ohlhorst, and M. Wilke, “Water and the Density of Silicate Glasses,” Contrib. Mineral. Petrol. 138, 337–347 (2000).

    Article  Google Scholar 

  64. B. Scaillet, F. Holtz, M. Pichavant, and M. O. Schmidt, “The Viscosity of Himalayan Leucogranites: Implications for Mechanisms of Granitic Magma Ascent,” J. Geophys. Res. 101, 27691–27699 (1996).

    Article  Google Scholar 

  65. V. N. Sharapov and A. N. Cherepanov, Dynamics of Magma Differentiation (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  66. V. N. Sharapov and Yu. A. Averkin, “Dynamics of Heat- and Mass-Exchange in the Orthomagmatic Fluid Systems,” Tr. Ins. Geol. Geofiz., No. 721, (1990) [in Russian].

  67. H. R. Shaw, “Viscosities of Magmatic Silicate Liquids: An Empirical Method of Prediction,” Amer. J. Sci. 272, 870–893 (1972).

    Google Scholar 

  68. A. G. Simakin, P. Armienti, and M. B. Epel’baum, “Coupled Degassing and Crystallization: Experimental Study at Continuous Pressure Drop, with Application to Volcanic Bombs,” Bull. Volcanol. 61, 275–287 (1999).

    Article  Google Scholar 

  69. A. G. Simakin, P. Armienti, and T. P. Salova, “Joint Degassing and Crystallization: Experimental Study with a Gradual Pressure Release,” Geokhimiya, No. 6, 579–591 (2000) [Geochem. Int.38, 523–534 (2000)].

  70. M. C. Sirbescu, E. E. Hartwick, and J. J. Student, “Rapid Crystallization of the Animikie Red Ace Pegmatite, Florence County, Northeastern Wisconsin: Inclusion Microthermometry and Conductive-Cooling Modeling,” Contrib. Mineral. Petrol. 156, 289–305 (2008).

    Article  Google Scholar 

  71. M. Štemprok, D. Dolejš, A. Müller, R. Seltmann, “Textural Evidence of Magma Decompression, Devolatilization and Disequilibrium Quenching: An Example from the Western Krušné Hory/Erzgebirge Granite Pluton,” Contrib. Mineral. Petrol. 155, 93–109 (2008).

    Article  Google Scholar 

  72. R. Thomas and J. D. Webster, “Strong Tin Enrichment in a Pegmatite-Forming Melt,” Mineralium Deposita 35, 570–582 (2000).

    Article  Google Scholar 

  73. J. L. R. Touret, S. Z. Smirnov, I. S. Peretyazhko, V. Ye. Zagorsky, and V. G. Thomas, “Magmatic-Hydrothermal Transition in Tourmaline-Bearing Miarolitic Pegmatites: Hydrosaline Fluids or Silica Gels?,” in International Symposium. Granitic Pegmatites: The State of the Art, Porto, Portugal, 2007 (Proto, 2007), pp. 92–93.

  74. J. L. Vigneresse, “The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation,” Ore Geol. Rev. 30, 181–216 (2007).

    Article  Google Scholar 

  75. J. L. Vigneresse, “Toward a New Paradigm for Granite Generation,” R. Soc. Edinburgh Trans. Earth Sci. 95, 11–22 (2004).

    Article  Google Scholar 

  76. K. L. Webber, A. U. Falster, W. B. Simmons, and E. E. Foord, “The Role of Diffusion-Controlled Oscillatory Nucleation in the Formation of Line Rock in Pegmatite-Aplite Dikes,” J. Petrol. 38, 1777–1791 (1997).

    Article  Google Scholar 

  77. K. L. Webber, W. B. Simmons, A. U. Falster, and E. E. Foord, “Cooling Rates and Crystallization Dynamics of Shallow Level Pegmatite-Aplite Dikes, San Diego County, California,” Am. Mineral. 84, 708–717 (1999).

    Google Scholar 

  78. S. Weizhou, L. Hongfei, Li Huimin, Li Wuxian, and W. Dezi, “The Thermal History of the Miarolitic Granite at Xincun, Fujiian Province, China,” Chin. Sci. Bull. 45, 1991–1995 (2000).

    Article  Google Scholar 

  79. K. Wohletz, L. Civetta, G. Orsi, “Thermal Evolution of the Phlegraean Magmatic System,” J. Volcanol. Geotherm. Res. 91, 381–414 (1999).

    Article  Google Scholar 

  80. V. Ye. Zagorsky and I. S. Peretyazhko, “The Malkhan Granite-Pegmatite System,” Dokl. Akad. Nauk 406(4), 511–515 (2006) [Dokl. Earth Sci. 206, 132–135 (2006)].

    Google Scholar 

  81. V. Ye. Zagorsky, I. S. Peretyazhko, and B. M. Shmakina, Miarolitic Pegmatites (Granite Pegmatites; Vol. 3) (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  82. V. E. Zagorsky and I. S. Peretyazhko, Pegmatites with Precious Stones of the Central Transbaikalia (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Peretyazhko.

Additional information

Original Russian Text © I.S. Peretyazhko, 2010, published in Petrologiya, 2010, Vol. 18, No. 2, pp. 195–222.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peretyazhko, I.S. Genesis of mineralized cavities (Miaroles) in granitic pegmatites and granites. Petrology 18, 183–208 (2010). https://doi.org/10.1134/S0869591110020062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110020062

Keywords

Navigation