Skip to main content
Log in

Distinctive petrological, geochemical, and geodynamic features of subduction-related magmatism

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Geological-petrological and geochemical data on subduction-related magmatism (including the volumes and compositions of the corresponding magmatic series) are compared to the results of experiments and numerical simulation. The subduction zone is subdivided into five depth sectors and volcanic zones I, II, and III: 1 is the accretionary wedge that controls the geodynamic stability of subduction; 2 is the sector of dehydration and fluid filtration; 3 is the zone of eclogitization and initial partial melting in the slab above which boninite volcanic zone I is formed during early stages; 4 is the main zone of melting of the sedimentary-basite layer and the development of volcanic zone II with the predominance of andesites; and 5 is the zone of higher degree melting, above which volcanic zone III (basaltic andesite and alkali basalt) is formed. The criterion of volcanism intensity, which was obtained within the scope of the melting model, is proportional to the subduction velocity and the thickness of the melting zone, and the distance between the groups of volcanics along the subduction zone is 75–100 km, at a thickness of the melting zone of 15–20 km. The calculated isotherm of 600°C, which controls the stability of serpentine and chlorite, is not identified at depth above 150 km, and this is confirmed by the composition and P-T conditions of the high-pressure rocks (containing diamond and coesite), which were brought from depths of 150–200 km in subduction zones. Seismic sections constructed with regard for the amplitude characteristics of seismic waves show two melting zones (“wet” melting at a depth of 100–200 km and “dry” melting at a depth of 150–200 km) and a complicated thermal structure of the suprasthenospheric wedge, which can include slant magma conduits. The mineralogical and geochemical features of arc magmatic series are formed at a decisive role of an H2O-CO2 fluid and an elevated oxidation potential. The predominant buffer minerals are as follows: garnet in the slab melting zone; magnetite, Ca-pyroxene, and amphibole in intermediate magmatic chambers; and amphibole, protoenstatite-bronzite (in place of olivine), and Cr-spinel (in place of magnetite) for boninite series generated in a “hot” asthenospheric wedge at interaction with fluids or water-rich melts. Actively disputable problems are the interactions scale of melts and fluids generated in a subduction zone with a “hot” mantle wedge, the possibility of transporting water-rich minerals deep into the mantle (to depths greater than 150 km), and the evolution of the scale at which young continental crust is generated by subduction melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Isacks, J. Oliver, and L. Sykes, Seismology and New Global Tectonics (J. Geophys. Res. 73, 5855–5899 (1968); Mir, Moscow, 1974) [in Russian].

    Google Scholar 

  2. R. N. Anderson, S. E. De Long, and W. M. Schwarz, “Thermal Model for Subduction with Dehydration in the Downgoing Slab,” J. Geol. 86, 731–739 (1978).

    Article  Google Scholar 

  3. G. P. Avdeiko, A. Yu. Antonov, O. N. Volynets, et al., Submarine Volcanism and Zoning of the Kurile Island Arc (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  4. Yu. A. Balashov, Isotope-Geochemical Evolution of the Earth’s Mantle and Crust (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. G. E. Bogoyavlenskaya, O. A. Braitseva, I. V. Melekestsev, et al., “Bezymyannyi Volcano,” in Active Volcanoes of Kamchatka (Nauka, Moscow, 1991), Vol. 1, pp. 163–200 [in Russian].

    Google Scholar 

  6. M.-A. Bonnardot, R. Hassani, and E. Tric, “Numerical Modelling of Lithosphere-Asthenosphere Interaction in a Subduction Zone,” Earth Planet. Sci. Lett. 272, 698–708 (2008).

    Article  Google Scholar 

  7. D. Boutelier, A. Chemenda, and C. Jorand, “Continental Subduction and Exhumation of High-Pressure Rocks: Insights from Thermo-Mechanical Lab-Experiments,” Earth Planet. Sci. Lett. 222, 209–216 (2004).

    Article  Google Scholar 

  8. G. Chiodini, M. Valenza, C. Cardellini, and A. Frigeri, “A New Web-Based Catalog of Earth Degassing Sites in Italy,” Eos 89(37), 341–342 (2008).

    Article  Google Scholar 

  9. M. Cloos, “Litospheric Buoyancy and Collision Orogenesis: Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges and Seamounts,” Geol. Soc. Am. Bull. 105(6), 715–737 (1993).

    Article  Google Scholar 

  10. K. C. Condie, Earth as an Evolving Planetary System (Elsevier Acad. Press, London, 2005).

    Google Scholar 

  11. A. J. Crawford and W. E. Cameron, “Petrology and Geochemistry of Cambrian Boninites and Low-Ti Andesites from Heathcote, Victoria,” Contrib. Mineral. Petrol. 91, 93–104 (1985).

    Article  Google Scholar 

  12. A. J. Crawford, Boninites (Unwin Hyman, London, 1989).

    Google Scholar 

  13. W. B. Dallwitz, D. H. Green, and J. E. Thompson, “Clinocnstatite in a Volcanic Rocks from the Cape Vogel Area, Papua,” J. Petrol. 7, 375–403 (1966).

    Google Scholar 

  14. J. P. Davidson and R. J. Arculus, “The Significance of Phanerozoic Arc Magmatism in Generating Continental Crust,” in Evolution and Differentiation of the Continental Crust, Ed. by M. Brown and T. Rushmer (Cambridge Press, Cambridge, 2006), pp. 135–172.

    Google Scholar 

  15. N. L. Dobretsov and A. G. Kirdyashkin, “Dynamics of Subduction Zones. Models of Formation of Accretionary Wedge and Exhumation of Glaucophane Schists and Eclogites,” Geol. Geofiz., No. 3, 4–20 (1991).

  16. N. L. Dobretsov and A. G. Kirdyashkin, “Modeling of Subduction Processes,” Geol. Geofiz. 38(5), 846–856 (1997).

    Google Scholar 

  17. N. L. Dobretsov and A. G. Kirdyashkin, “Estimation of Global Exchange Processes between the Earth’s Shells: Comparison of Real Geological and Theoretical Data,” Geol. Geofiz. 39(9), 1269–1279 (1998).

    Google Scholar 

  18. N. L. Dobretsov and A. G. Kirdyashkin, “Subduction Zone Dynamics: Models of an Accretionary Wedge,” Ofioliti 17(1), 155–164 (1992).

    Google Scholar 

  19. N. L. Dobretsov and Yu. A. Kosygin, Petrochemical Zoning of the Quaternary Island Arcs of Island Arcs on NW Pacific Ocean (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  20. N. L. Dobretsov, “Blueschists and Eclogites: A Possible Plate Tectonic Mechanism for Their Emplacement from the Upper Mantle,” Tectonophysics 186, 253–268 (1991).

    Article  Google Scholar 

  21. N. L. Dobretsov, Global Petrological Processes (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  22. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, “Geodynamic and Thermal Models of Subduction Zone,” Fiz. Mezomekh. 12(1), 5–16 (2009).

    Google Scholar 

  23. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (Izd-vo SO RAN, filial “Geo”, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  24. E. N. Erlikh, Modern Structure and Quaternary Volcanism of the Western Circum Pacific (Nauka, Novosibirsk, 1973) [in Russian].

    Google Scholar 

  25. S. A. Fedotov, “Ascent of Basic Masses in the Earth’s Crust and Mechanism of Fissure Basaltic Eruptions,” Izd. AN SSSR, Ser. Geol., No. 10, 5–23 (1976).

  26. T. P. Fischer, “Fluxes of Volatiles (H2O, CO2, N2, Cl, F) from Arc Volcanoes,” Geochemic. J 42, 21–38 (2008).

    Google Scholar 

  27. S. Foley, M. Tiepolo, and R. Vannucci, “Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones,” Nature 417, 837–840 (2002).

    Article  Google Scholar 

  28. Geology of the Floor of the Philippine Sea (Nauka, Moscow, 1980), p. 282 [in Russian].

  29. H. W. Green, “Shearing Instabilities Accompanying HP-Phase Transformations and the Mechanics of Deep Earthquakes,” Proc. Natl. Acad. Sci. USA, 9133–9138 (2007).

  30. G. D. Harper, “The Josephine Ophiolite, Northwestern California,” Geol. Soc. Am. Bull. 95, 1009–1026 (1984).

    Article  Google Scholar 

  31. A. Hasegava, “Seismic Structure of the NE Japan and Kuril Ares,” in Proceedings of 101 Meeting of Geol. Soc. Japan, Sapporo, Japan, 1994, (Sapporo, 1994), p. 13.

  32. From the Back-Country to Science: The dynasty of Kell-Dobretsovs (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2009), p. 160 [in Russian].

  33. K. Kaiho and S. Saito, “Oceanic Crust Production and Climate Change during the Last 100 Ma,” Terra Nova 6, 376–384 (1994).

    Article  Google Scholar 

  34. R. W. Kay, “Aleutian Magnesian Andesites: Melt from Subducted Pacific Ocean Crust,” J. Volc. Geotherm. Res 4, 117–132 (1978).

    Article  Google Scholar 

  35. P. B. Kelemen, G. M. Yogodzinski, and D. W. Seholl, “Along-Strake Variation in Lavas of Aleutian Island Arcs: Genesis of High Mg Andesite and Implication for Continental Crust,” Geophys. Monogr. 238, 223–276 (2003).

    Google Scholar 

  36. N. G. Kell’, Map of the Kamchatka Volcanoes. Kamchatka Expedition of F.P. Ryabushinskii, 1908–1910 (Geol. otd. Tikhookeanskogo kom. AN SSSR and State. Rus. Geograph. Soc., Leningrad, 1928) [in Russian].

    Google Scholar 

  37. P. K. Kepezhinskas, M. J. Defant, and M. S. Drummond, “Na-Metasomatism in the Island Arc Mantle,” J. Petrol. 36, 1505–1527 (1995).

    Google Scholar 

  38. V. N. Kovalenko, V. B. Naumov, V. V. Yarmolyuk, and V. A. Dorofeeva, “Volatile Components (H2O, CO2, Cl, F, and S) in Basic Magmas of Various Geodynamic Settings: Data on Melt Inclusions and Quenched Glasses,” Petrologiya 8(2), 131–160 (2000) [Petrology 8, 113–144 (2000)].

    Google Scholar 

  39. N. P. Laverov, N. L. Dobretsov, O. A. Bogatikov, et al., Youngest and Modern Volcanism of Russia, Ed. by N. P. Laverov (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  40. V. L. Leonov, E. N. Grib, G. A. Karpov, et al., “Uzon Caldera and Geyser Valley,” in Active Volcanoes of Kamchatka (Nauka, Moscow, 1991), Vol. 2, pp. 63–75 [in Russian].

    Google Scholar 

  41. M. E. Magee and M. D. Zobak, “Evidence for a Weak Interplate Thrust Fault along the Northern Japan Subduction Zone and Implication for the Mechanism of Thrust Faulting and Fluid Expulsion,” Geology 21(9), 809–812 (1993).

    Article  Google Scholar 

  42. B. D. Marsh and I. S. Carmichael, “Benioff Zone Magmatism,” J. Geophys. Res. 79(8), 1196–1206 (1974).

    Article  Google Scholar 

  43. B. D. Marsh, “On the Mechanism of Igneous Diapirism, Stopping, and Zone Melting,” Am. J. Sci. 282, 809–855 (1982).

    Google Scholar 

  44. H. Martin, R. H. Smithies, R. Rapp, et al., “An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution,” Lithos 79, 1–24 (2005).

    Article  Google Scholar 

  45. Sh. Maruyama, D. A. Yuen, and B. F. Windley, “Dynamics of Plumes and Superplumes Trough Time,” in Superplumes: Beyond Plate Tectonics, Ed. by D. A. Yuen, Sh. Maruyama, Sh. I. Karato, and B. F. Windley (Springer, Dordreht, 2007), pp. 441–502.

    Chapter  Google Scholar 

  46. Y. L. Niu, O’Hara M.J. “MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta, Ti) in the Continental Crust: New Perspectives on Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle,” Lithos. 2009 11(1–2), 1–17 (2009).

    Google Scholar 

  47. Oceanology. Ocean Geophysics. Vol. 2. Geodynamics (Nauka, Moscow, 1979), p. 416 [in Russian].

  48. P. Olson and H. Singer, “Creeping Plumes,” J. Fluid Mech. 158, 511–531 (1985).

    Article  Google Scholar 

  49. S. Omori and T. Komabayashi, “Subduction Zone: the Water Channel To the Mantle,” in Superplumes; Beyond Plate Tectonics, Ed. by D. A. Yuen, Sh. Maruyama, Sh. I. Karato, and B. F. Windley (Springer, Dordreht, 2007), pp. 113–138.

    Chapter  Google Scholar 

  50. S. M. Peacock, “Thermal and Petrologic Structure of Subduction Zones,” in Subduction: Top to Bottom Geophys. Monograph 96, 119–132 (1996).

    Google Scholar 

  51. A. V. Peive, G. Agapova, A. Belyaev, et al., “Initial Report of the Geological Study of Oceanic Crust of the Philippine Sea Floor,” Ofioliti 2, 137–168 (1977).

    Google Scholar 

  52. T. Plank and C. H. Langmuir, “The Chemical Composition of Subducting Sediments and Its Consequnses for the Crust and Mantle,” Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  53. R. P. Rapp and E. B. Watson, “Dehydration Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 36, 891–931 (1995).

    Google Scholar 

  54. R. P. Rapp, N. Shimizu, M. D. Norman, and G. S. Applegate, “Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge,” Chem. Geol. 160, 335–356 (1999).

    Article  Google Scholar 

  55. V. N. Sharapov, “Phenomenological Description of the Magmatic Facies and Structural-Dynamic Systems,” Geol. Geofiz. 35(9), 3–20 (1994).

    Google Scholar 

  56. A. Ya. Sharaskin, N. L. Dobretsov, and N. V. Sobolev, “Marianites-the Clinoenstatite-Bearing Pillow-Lavas, Associated with the Ophiolite Assemblages of Mariana Trench,” in Ophiolites. Nicosia (Cyprus Geol. Surv., 1980), pp. 473–479.

  57. A. A. Shchipanskii, Subduction and Mantle-Plume Processes in the Geodynamics of Formation of the Archean Greenstone Belts (Izd-vo LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  58. G. Shlikhting, Theory of the Boundary Layer (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  59. V. A. Simonov, N. L. Dobretsov, and M. M. Buslov, “Boninitic Series in the Structures of the Paleozoic Ocean,” Geol. Geofiz. 35(7–8), 182–199 (1994).

    Google Scholar 

  60. A. V. Sobolev and M. Chaussidon, “H2O Concentration in Primary Melt from Suprasubduction Zones and Mid-Oceanic Ridges,” Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  61. V. S. Sobolev and N. V. Sobolev, “Problem of Two-Stage Formation of the Earth’s,” Dokl. Akad. Nauk SSSR 224(2), 435–438 (1975).

    Google Scholar 

  62. V. S. Sobolev, “Petrology of Traps in the Siberian Platform,” Tr. Arktich. Inst. 43, 228 (1936) [in Russian].

    Google Scholar 

  63. V. S. Sobolev, “Structure of the Upper Mantle and Ways of Magma Formation,” in 13th Vernadsky Readings, Moscow, Russia, 1973 (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  64. A. V. Sobolev, “Melt Inclusions in Minerals as a Source of Principle Petrological Information,” Petrologiya 4(3), 228–239 (1996) [Petrology 4, 209–220 (1996)].

    Google Scholar 

  65. S. V. Sobolev, A. Y. Babeyko, I. Koulakov, and O. Oncken, “Mechanism of the Andean Orogeny: Insight from Numerical Modelling,” in The Andes: Active Subduction Orogeny, Ed. by O. Oncken et al. (Springer, Dordreht, 2008), pp. 513–535.

    Google Scholar 

  66. Y. Tatsumi, “High-Mg Andesites in the Setouchi Volcanic Belt, SW Japan. Analogy to Archean Magmatism and Continental Crust Formation,” Ann. Rev. Earth Planet. Sci 34, 467–499 (2006).

    Article  Google Scholar 

  67. Y. Tatsumi, “Migration of Fluid and Genesis of Basalt Magmas in Subduction Zones,” J. Geophys. Res. 94, 4697–4707 (1989).

    Article  Google Scholar 

  68. Y. Timura, Y. Tatsumi, D. Zhao, et al., “Hot Fingers in the Mantle Wedge: New Insights Into Magma Genesis in Subduction Zones,” Earth Planet. Sci. Lett. 197(1–2), 105–116 (2002).

    Article  Google Scholar 

  69. S. Ueda, “Subduction Zones: An Introduction to Comparative Subductology,” Tectonophysics 81, 133–159 (1982).

    Article  Google Scholar 

  70. M. J. Van Bergen, P. Z. Vroon, and J. A. Hoogewerff, “Geochemical and Tectonic Relationships in the East Indonesian Arc-Continent Collision Region: Implications for the Subduction of the Australian Passive Margin,” Tectonophysics 223, 97–116 (1993).

    Article  Google Scholar 

  71. Volcanoes and Quaternary Volcanism of the Sredinnyi Range of Kamchatka (Nauka, Moscow, 1972) [in Russian].

  72. S. V. Vysotskii, Ophiolitic Associations of the Island Arc Systems of the Pacific Ocean (Izd-vo DVO AN SSSR, Vladivostok, 1989) [in Russian].

    Google Scholar 

  73. I. A. Whitehead and D. S. Luther, “Dynamic of Laboratory Diapir and Plume Models,” J. Geophys. Res. 80(25), 705–717 (1975).

    Article  Google Scholar 

  74. A. N. Zavaritskii and V. S. Sobolev, Physicochemical Principles of Igneous Petrology (Gosgeoltekhizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  75. D. Zhao, “Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics,” Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

  76. V. N. Zharkov, Internal Structure of the Earth and Planets (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  77. L. P. Zonenshain and M. I. Kuz’min, “Deep Geodynamics of the Earth,” Geol. Geofiz. 34(4), 3–13 (1993a).

    Google Scholar 

  78. L. P. Zonenshain and M. I. Kuzmin, Paleogeodynamics (Nauka, Moscow, 1993b) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Dobretsov.

Additional information

Original Russian Text © N.L. Dobretsov, 2010, published in Petrologiya, 2010, Vol. 18, No. 1, pp. 88–110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobretsov, N.L. Distinctive petrological, geochemical, and geodynamic features of subduction-related magmatism. Petrology 18, 84–106 (2010). https://doi.org/10.1134/S0869591110010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110010042

Keywords

Navigation