Skip to main content
Log in

Oceanic and riftogenic metavolcanic associations of greenstone belts in the northwestern part of the Sharyzhalgai Uplift, Baikal region

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Onot and Bulun terranes are confined to the Sharyzhalgai Uplift in the southwestern margin of the Siberian craton. They consist of alternating blocks and nappes of Paleoarchean tonalite-trondhjemite-granodiorite complex and supracrustal metasedimentary-volcanogenic rocks of greenstone belts (GSB). The lower part of the Onot GSB is made up of a bimodal association of aporhyolite microgneisses with subordinate amphibolites, while the upper part consists of amphibolites associated with banded iron formation, metapelites, dolomitic marbles, and magnesites. The Urik GSB in the Bulun block comprises three rock associations: (1) garnet amphibolites and amphibolites alternating with kyanite-bearing mica schists and quartzite schists; (2) garnet-bearing biotite and amphibole crystalline schists with tectonic lenses of garnet amphibolites; (3) biotite and amphibole-biotite orthogneisses and biotite plagiogneisses. The microgneisses (metarhyolitoids) of the Onot belt are correlated with within-plate volcanic rocks and A-type granites. The composition of the amphibolites corresponds to high-Mg low-Ti tholeiitic basalts. The formation of metavolcanic rocks of the Onot GSB was related to the rifting of the Paleoarchean continental crust, which is supported by the formation of felsic metavolcanic rocks from an ancient tonalite source and by the geochemical signatures of crustal contamination of metabasalts. The amphibolites of the Urik GSB are subdivided into three petrogeochemical types. The first and second types correspond to high-and low-Mg tholeiitic basalts and have practically flat multielement patterns. The amphibolites of the third type correspond to subalkaline leucobasalts. Two types of orthogneisses are comparable with intermediate-acid volcanic rocks of the andesite-dacite and adakite series. In terms of geochemistry, the metamafic volcanic rocks of the Urik GSB represent the rocks of the oceanic crust. Oceanic settings of their formation are confirmed by an association of metavolcanic rocks with abyssal distal siliceous-argillaceous deposits. The formation of two types of intermediate-acid metavolcanic rocks of andesite-dacite and adakite associations, as well as garnet-bearing paraschists, was presumably related to subduction settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. T. Arndt, F. Albarede, and E. G. Nisbet, “Mafic and Ultramafic Magmatism,” in Greenstone Belts, Ed. by M. J., De Wit, and D. Ashwal (Claredon Press, Oxford, 1997).

    Google Scholar 

  2. T. B. Bayanova, Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  3. E. V. Bibikova, O. M. Turkina, T. I. Kirnozova, et al., “Ancient Plagiogneisses of the Onot Block of the Sharyzhalgai Metamorphic Massif: Isotopic Geochronology,” Geokhimiya, No. 3, 310–316 (2006) [Geochem. Int. 44, 310–317 (2006)].

  4. E. V. Bibikova, V. I. Levitskii, L. Z. Reznitskii, et al., “Archean Tonalite-Trondhjemite Association of the Prisayan Inlier of the Siberian Platform: U-Pb, Sm-Nd, and Sr Isotopic Data,” in Geology, Geochemistry, and Geophysics on the Turn of 20th and 21th Centuries, Irkutsk, Russia, 2001 (IZK SO RAN, Irkutsk, 2001), pp. 175–176 [in Russian].

    Google Scholar 

  5. M. J. Bickle, E. G. Nisbet, and A. Martin, “Archean Greenstone Belts Are not Oceanic Crust,” J. Geol. 102, 121–138 (1994).

    Article  Google Scholar 

  6. R. Bolhar, B. S. Kamber, S. Moorbath, et al., “Chemical Characterization of Earth’s Most Ancient Metasediments from the Isua Greenstone Belt, Southern West Greenland,” Geochim. Cosmochim. Acta. 69, 1555–1573 (2005).

    Article  Google Scholar 

  7. W. V. Boynton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984).

    Google Scholar 

  8. K. C. Condie, “Episodic Continental Growth Models: Afterthoughts and Extension,” Tectonophysics 322, 153–162 (2000).

    Article  Google Scholar 

  9. K. C. Condie, “Greenstones through Time,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994).

    Google Scholar 

  10. K. Condie, Archean Greenstone Belts (Elsevier, Amsterdam, 1981).

    Book  Google Scholar 

  11. T. V. Donskaya, E. B. Sal’nikova, E. V. Sklyarov, et al., “Early Proterozoic Postcollision Magmatism at the Southern Flank of the Siberian Craton: New Geochronological Data and Geodynamic Implications,” Dokl. Akad. Nauk 382(5), 663–667 (2002) [Dokl. Earth Sci. 383, 125–128 (2002)].

    Google Scholar 

  12. A. V. Dubinin, “Geochemistry of Rare Earth Elements in the Ocean,” Litol. Polezn. Iskop., No. 4, 339–358 (2004) [Lithol. Miner. Resour. 39, 289–307 (2004)].

  13. G. N. Eby, “The A-type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on their Petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  14. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  15. D. P. Gladkochub, E. V. Sklyarov, Yu. V. Men’shagin, et al., “Geochemistry of Ancient Ophiolites of the Sharyzhalgai Uplift,” Geokhimiya, No. 1 0, 1039–1051 (2001) [Geochem. Int. 39, 947–958 (2001)].

  16. S. J. Goldstein and S. B. Jacobsen, “Nd and Sm Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  17. O. V. Grabkin and A. I. Mel’nikov, Structure of the Basement of the Siberian Platform in the Marginal Suture Zone (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  18. M. G. Green, P. J. Sylvester, and R. Buik, “Growth and Recycling of Early Archaean Continental Crust: Geochemical Evidence from the Coonterunah and Warrrawoona Groups, Pilbara Craton, Australia,” Tectonophysics 322, 69–88 (2000).

    Article  Google Scholar 

  19. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Evolution of Chondrites and Achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  20. Jahn Bor-Ming and K. C. Condie, “Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites, Geochim. Cosmochim. Acta 59, 2239–2258 (1995).

    Article  Google Scholar 

  21. L. S. Jensen, “A New Cation Plot for Classifying Subalkalic Volcanic Rocks,” Ontario Div. Mines. Misc. 66 (1976).

  22. A. C. Kerr, R. V. White, and A. D. Saunders, “LIP Reading: Recognizing Oceanic Plateaux in the Geological Record,” J. Petrol. 41, 1041–1056 (2000).

    Article  Google Scholar 

  23. R. Kerrich, A. Polat, D. Wyman, and P. Hollings, “Trace Element Systematics of Mg-to Fe-Tholeiitic Basalt Suites of the Superior Province: Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis,” Lithos 46, 163–187 (1999).

    Article  Google Scholar 

  24. J. C. Lassiter and D. J. DePaolo, “Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints, in Large Igneous Provinces, Ed. by J. F. Mahoney and M. F. Coffin, AGU Monograph 100, 335–355 (1997).

  25. V. I. Levitskii, A. I. Mel’nikov, L. Z. Reznitskii, et al., “Postkinematic Early Proterozoic Granitoids of the Southwestern Part of the Siberian Platform,” Geol. Geofiz. 43(8), 717–731 (2002).

    Google Scholar 

  26. J. Ludden, L. Geliens, and P. Trudel, “Archean Metavolcanics from the Rouyn-Noranda District, Abitibi Greenstone Belt, Quebec. 2. Mobility of Trace Elements and Petrogenetic Constraints,” Can. J. Earth Sci. 19, 2276–2287 (1982).

    Google Scholar 

  27. J. J. Mahoney, W. B. Jones, F. A. Frey, et al., “Geochemical Characteristics of Lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Keguelen Plateau: Cretaceous Plateau Volcanism in the Southeast Indian Ocean,” Chem. Geol. 120, 315–345 (1995).

    Article  Google Scholar 

  28. H. Martin, “Archean Grey Gneisses and the Genesis of Continental Crust,” in Archean Crustal Evolution, Ed. by K. C. Condie (Elsevier, Amsterdam, 1994).

    Google Scholar 

  29. H. Martin, “The Adakitic Magmas: Modern Analogues of Archaean Granitoids,” Lithos 46, 411–429 (1999).

    Article  Google Scholar 

  30. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites (Izd-vo OIGGiM SO RAN, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  31. A. D. Nozhkin, O. M. Turkina, and M. S. Mel’gunov, “Geochemistry of the Metavolcanosedimentary and Granitoid Rocks of the Onot Greenstone Belt,” Geokhimiya, No. 1, 31–50 (2001) [Geochem. Int. 39, 27–44 (2001)].

  32. H. Ohta, S. Maruyama, E. Takahashi, et al., “Field Occurrence, Geochemistry and Petrogenesis of the Archean Mid-Oceanic Ridge Basalt (AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia,” Lithos 37, 199–221 (1996).

    Article  Google Scholar 

  33. T. Ota, D. P. Gladkochub, E. V. Sklyarov, et al., “P-T History of Garnet-Websterites in the Sharyzhalgay Complex, Southwestern of Siberian Craton: Evidence for Paleoproterozoic High-Pressure Metamorphism,” Precambrian Res. 132, 327–348 (2004).

    Article  Google Scholar 

  34. L. M. Parfenov, Main Features of the Precambrian Structure of the Eastern Sayan (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  35. A. Polat and R. Kerrich, “Archean Greenstone Belt Magmatism and the Continental Growth-Mantle Evolution Connection: Constraints from Th-U-Nb-LREE Systematics of the 2.7 Ga Wawa Subprovince, Superior Province, Canada,” Earth Planet. Sci. Lett. 175, 41–54 (2000).

    Article  Google Scholar 

  36. A. Polat and R. Kerrich, “Nd-isotope Systematics of ∼2.7 Ga Adakites, Magnesian Andesites, and Arc Basalts, Superior Province: Evidence for Shallow Crustal Recycling at Archean Subduction Zones,” Earth Planet. Sci. Lett. 202, 345–360 (2002).

    Article  Google Scholar 

  37. A. Polat, R. Kerrich, and D.A. Wyman, “Geochemical Diversity in Oceanic Komatiites and Basalts from the Late Archean Wawa Greenstone Belts, Superior Province, Canada: Trace Element and Nd Isotope Evidence for a Heterogeneous Mantle,” Precambrian Res. 94, 139–173 (1999).

    Article  Google Scholar 

  38. I. S. Puchtel, K. M. Haase, C. Chauvel, et al., “Petrology and Geochemistry of Crustally Contaminated Komatiitic Basalts from the Vetreny Belt, Southeastern Baltic Shield: Evidence for an Early Proterozoic Mantle Plume beneath Rifted Archean Continental Lithosphere,” Geochim. Cosmochim. Acta 61, 1205–1222 (1997).

    Article  Google Scholar 

  39. I. S. Puchtel, A. W. Hofmann, Yu. V. Amelin, et al., “Combined Mantle Plume-Island Arc Model for the Formation of the 2.9 Ga Sumozero-Kenozero Greenstone Belt, SE Baltic Shield: Isotope and Trace Element Constraints,” Geochim. Cosmochim. Acta 63, 3579–3595 (1999).

    Article  Google Scholar 

  40. I. S. Puchtel, A. W. Hofmann, K. Mezger, et al., “Oceanic Plateau Model for Continental Crustal Growth in the Archaean: A Case Study from the Kostomuksha Greenstone Belt, NW Baltic Shield,” Earth Planet. Sci. Lett. 155, 57–74 (1998).

    Article  Google Scholar 

  41. R. P. Rapp and E. B. Watson, “Dehydration Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 36, 891–931 (1995).

    Google Scholar 

  42. H. A. Sandeman, S. Hanmer, S. Tella, et al., “Petrogenesis of Neoarchaean Volcanic Rocks of the MacQuoid Supracrustal Belt: a Back-Arc Setting for the Northwestern Hearne Subdomain, Western Churchill Province, Canada,” Precambrian Res. 144, 140–165 (2006).

    Article  Google Scholar 

  43. A. D. Saundres, M. J. Norry, and J. Tarney, “Origin of MORB and Chemically-Depleted Mantle Reservoirs: Trace Element Constraints” J. Petrol. Special Lithosphere Issue. 415–445 (1988).

  44. A. I. Sez’ko, “Main Stages of the Formation of Continental Crust of the Sayan Region,” in Evolution of the Earth’s Crust in the Precambrian and Paleozoic. Sayan-Baikalian Mountainous Area (Nauka, Novosibirsk, 1988), pp. 5–41 [in Russian].

    Google Scholar 

  45. A. A. Shchipanskii, A. V. Samsonov, A. Yu. Petrova, and Yu. O. Larionova, “Geodynamics of the Eastern Margin of Sarmatia in the Paleoproterozoic,” Geotektonika, No. 1, 43–70 (2007) [Geotectonics 41, 38–62 (2007)].

  46. J. Singh and W. Johannes, “Dehydration Melting of Tonalites. Part II. Composition of Melts and Solids,” Contrib. Mineral. Petrol. 125, 26–44 (1996).

    Article  Google Scholar 

  47. K. P. Skjerlie and A. D. Johnston, “Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites,” J. Petrol. 34, 785–815 (1993).

    Google Scholar 

  48. R. H. Smithies, “The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic adakite,” Earth Planet. Sci. Lett. 182, 115–125 (2000).

    Article  Google Scholar 

  49. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  50. S. A. Svetov, Magmatic Systems of the Ocean-Continent Transition Zone in the Archean of the Eastern Part of the Fennoscandian Shield (Izd-vo KarNTs RAN, Petrozavodsk, 2005) [in Russian].

    Google Scholar 

  51. S. A. Svetov, Kh. Khukhma, A. I. Svetova, and T. N. Nazarova, “The Oldest Adakites of the Fennoscandian Shield,” Dokl. Akad. Nauk 397(6), 810–814 (2004) [Dokl. Earth Sci. 397, 877–882 (2004)].

    Google Scholar 

  52. P. J. Sylvester, “Archean Granite Pluton,” in Archean Crustal Evolution (Elsevier, Amsterdam, 1994), pp. 261–314.

    Chapter  Google Scholar 

  53. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  54. P. C. Thurston and V. N. Kozhevnikov, “An Archean Quartz Arenite-Andesite Association in the Eastern Baltic Shield: Implications for Assemblage Types and Shield History,” Precambrian Res. 101, 313–340 (2000).

    Article  Google Scholar 

  55. K. Y. Tomlinson, D. J. Hughes, P. C. Thurston, and R. P. Hall, “Plume Magmatism and Crustal Growth at 2.9 to 3.0 Ga in Steep Rock and Lumby Lake Area, Western Superior Province,” Lithos 46, 103–136 (1999).

    Article  Google Scholar 

  56. O. M. Turkina, A. D. Nozhkin, E. V. Bibikova, and A. A. Fedotova, “Archean Continental Crust of the Northwestern Part of Sharyzhalgai Inlier: Isotopic-Geochemical Features and Lateral Distribution,” in Proceedings of Conference on the Archean Geology and Geodynamics, St. Petersburg, Russia, 2005 (St. Petersburg, 2005), pp. 384–390 [in Russian].

  57. O. M. Turkina, A. D. Nozhkin, T. B. Bayanova, and N. V. Dmitrieva, “Isotopic Provinces and Evolution Stages of the Precambrian Crust at the Southwestern Margin of the Siberian Craton and Its Folded Framing,” Dokl. Akad. Nauk 413(6), 810–815 (2007) [Dokl. Earth Sci. 413, 481–486 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Turkina.

Additional information

Original Russian Text © O.M. Turkina, A.D. Nozhkin, 2008, published in Petrologiya, 2008, Vol. 16, No. 5, pp. 501–526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkina, O.M., Nozhkin, A.D. Oceanic and riftogenic metavolcanic associations of greenstone belts in the northwestern part of the Sharyzhalgai Uplift, Baikal region. Petrology 16, 468–491 (2008). https://doi.org/10.1134/S0869591108050044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591108050044

Keywords

Navigation