Skip to main content
Log in

Collision metamorphism of precambrian complexes in the Transangarian Yenisei Range

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Three complexes in the zones of the Ishimbinskii and Tatarka deep faults in the Transangarian part of the Yenisei Range were studied to reproduce their metamorphic evolution and elucidate distinctive features of regional geodynamic processes. The results of our geological and petrological studies with the application of geothermobarometry and P-T metamorphic paths indicate that the Neoproterozoic kyanite-sillimanite intermediate-pressure metamorphism overprinted regionally metamorphosed rocks of low pressure of Middle Riphean age. The kyanite-sillimanite metamorphism was characterized by (1) the development of deformational structures and textures and kyanite-bearing blastomylonites with sillimanite, garnet, and staurolite after andalusite-bearing regional-metamorphic mineral assemblages; (2) insignificant apparent thickness of the zone of intermediate-pressure zonal metamorphism (from 2.5 to 7 km), which was localized near overthrusts; (3) a low geothermal gradient during metamorphism (from 1–7 to 12°C/km); and (4) a gradual increase in the total metamorphic pressure from southwest to northeast with approaching the overthrusts. These features are typical of collisional metamorphism during the thrusting of continental blocks and testify that the rocks subsided nearly isothermally. The process is justified within the scope of a model for the tectonic thickening of the crust via rapid thrusting and subsequent rapid exhumation and erosion. The analysis of our results with regard for the northeastern dips of the thrusts allowed us to consider the intermediate-pressure metapelites as products of collision metamorphism, which were formed in the process of a single thrusting of ancient rock blocks from the Siberian Platform onto the Yenisei Range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Ague, “Evidence for Major Mass Transfer and Volume Strain During Regional Metamorphism of Pelites,” Geology 19, 855–858 (1991).

    Article  Google Scholar 

  2. H. Austrheim, “The Granulite-Eclogite Facies Transition: A Comparison of Experimental Work and Natural Occurrence in the Bergen Arcs, Western Norway,” Lithos 25, 163–169 (1990).

    Article  Google Scholar 

  3. O. V. Avchenko, Mineral Equilibria in the Metamorphic Rocks and Geothermobarometric Problems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  4. A. J. Baker, “Models for the Tectonothermal Evolution of the Eastern Dalradian of Scotland,” J. Metamorph. Geol. 5, 101–118 (1987).

    Article  Google Scholar 

  5. C. Beaumont, R. A. Jamieson, M. H. Nguyen, and B. Lee, “Hymalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation,” Nature 414, 738–742 (2001).

    Article  Google Scholar 

  6. B. Beddoe-Stephens, “Pressures and Temperatures of Dalradian Metamorphism and the Andalusite-Kyanite Transformation in the Northeast Grampians,” Scottish J. Geol. 26, 3–14 (1990).

    Article  Google Scholar 

  7. I. V. Bel’kov, Kyanite Schists of the Keivy Formation (Akad. Nauk SSSR, Leningrad, 1963) [in Russian].

    Google Scholar 

  8. S. Yu. Belyaev and A. K. Basharin, “Modern Structure, Evolution, and Oil-and-Gas Potential of the Juncture Zone of the Siberian Platform and Western Siberian Plate,” Geol. Geofiz. 42(4), 736–745 (2001).

    Google Scholar 

  9. R. G. Berman, “Internally Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-FeO-MgO-Al2O3-SiO2-TiO2-H2O-CO2,” J. Petrol. 29, 455–522 (1988).

    Google Scholar 

  10. E. V. Bibikova, T. V. Gracheva, V. A. Makarov, and A. D. Nozhkin, “Age Boundaries in the Geological Evolution of the Early Precambrian in the Yenisei Range,” Stratigr. Geol. Korrelyatsiya 1(1), 35–41 (1993).

    Google Scholar 

  11. Yu. P. Bovin, “Tectonometamorphic Stages and Types of Metamorphism in the Transangara Portion of the Yenisei Range,” in Minerals and Mineral Assemblages of the Rocks and Ores of the Krasnoyarsk District (Nauka, Novosibirsk, 1982), pp. 50–61 [in Russian].

    Google Scholar 

  12. W. F. Brace and D. L. Kohlestedt, “Limits on Lithospheric Stress Imposed by Laboratory Experiments,” J. Geophys. Res. 85, 6248–6252 (1980).

    Article  Google Scholar 

  13. E. H. Brown and N. W. Walker, “A Magma-Loading Model for Barrovian Metamorphism in the Southeast Coast Plutonic Complex, British Columbia and Washington,” Geol. Soc. Am. Bull. 105, 479–500 (1993).

    Article  Google Scholar 

  14. E. H. Brown, “High-Pressure Metamorphism Caused by Magma Loading in Fiordland, New Zealand,” Journal of Metamorphic Geology 14, 441–452 (1996).

    Article  Google Scholar 

  15. K. A. Bucher-Nurminen, “A Recalibration of the Chlorite-Biotite-Muscovite Geobarometer,” Contrib. Mineral. Petrol. 96, 519–522 (1987).

    Article  Google Scholar 

  16. K. W. Burton, A. P. Boyle, W. L. Kirk, and R. Mason, “Pressure, Temperature and Structural Evolution of the Silitjema Fold-Nappe, Central Scandinavian Caledonides,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. London Spec. Publ. 43, 391–411 (1989).

  17. G. L. Clarke, M. Guirard, R. Powell, and J. R. Burg, “Metamorphism in the Olary Block, South Australia: Compression with Cooling in a Proterozoic Fold Belt” J. Metamorph. Geol. 5, 291–306 (1987).

    Article  Google Scholar 

  18. M. L. Crawford and L. E. Mark, “Evidence from Metamorphic Rocks for Overthrusting, Pennsylvania Piedmont, U.S.A,” Can. Mineral. 20, 333–347 (1982).

    Google Scholar 

  19. R. T. Cygan and A. C. Lasaga, “Self-Diffusion of Magnesium in Garnet at 750 To 900°C,” Am. J. Sci. 285, 328–350 (1985).

    Article  Google Scholar 

  20. N. L. Dobretsov, “Blueschists and Eclogites: A Possible Plate Tectonic Mechanism for the Emplacement from the Upper Mantle,” Tectonophysics 186, 253–268 (1991).

    Article  Google Scholar 

  21. N. L. Dobretsov, Global Petrological Processes (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  22. N. L. Dobretsov, M. M. Buslov, and V. A. Vernikovsky, “Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-Up of Rodinia,” Gondwana Research 6, 143–159 (2003).

    Article  Google Scholar 

  23. N. L. Dobretsov, V. S. Sobolev, N. V. Sobolev, and V. V. Khlestov, Facies of High-Pressure Regional Metamorphism (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  24. A. S. Egorov, Deep-Seated Structure and Geodynamics of the North Eurasian Lithosphere (VSEGEI, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  25. P. C. England and A. B. Thompson, “Pressure-Temperature Paths of Regional Metamorphism, I: Heat Transfer During the Evolution of Regions of Thickened Continental Crust,” J. Petrol. 25, 894–928 (1984).

    Google Scholar 

  26. E. J. Essene, “The Current Status of Thermobarometry in Metamorphic Rocks,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. London Spec. Publ. 43, 1–43 (1989).

  27. M. A. Etheridge, V. I. Wall, and S. F. Cox, “High Fluid Pressure during Regional Metamorphism and Deformation: Implication for Mass Transport and Deformation Mechanism,” J. Geophys. Res. 89, 4344–4358 (1984).

    Article  Google Scholar 

  28. V. V. Ez, “Structure Formation in the Deep Crust,” in Problems of the Evolution of Tectnosphere (Nauka, Moscow, 1997), pp. 104–125 [in Russian].

    Google Scholar 

  29. V. V. Fed’kin, “Analysis of Paragenetic Staurolite,” in Contributions to Physicochemical Petrology (Nauka, Moscow, 1970), Vyp. 2, pp. 214–255 [in Russian].

    Google Scholar 

  30. J. M. Ferry and F. S. Spear, “Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet,” Contrib. Mineral. Petrol. 66, 113–117 (1978).

    Article  Google Scholar 

  31. C. T. Foster, Jr., “Thermodynamic Models of Reactions Involving Garnet in Sillimanite/Staurolite Schists,” Mineral. Mag. 50, 427–439 (1986).

    Article  Google Scholar 

  32. T. V. Gerya and L. L. Perchuk, “GEOPATH: A New Computer Program for Geothermobarometry and Related Calculations with the IBM PC Computer,” in Proceedings of 15th General Meeting of IMA, Bejing, 1990 (Beijing, 1990), Vol. 2, p. 1010.

    Google Scholar 

  33. T. V. Gerya and L. L. Perchuk, “GEOPATH—A Thermodynamic Database for Geothermobarometry and Related Calculations with the IBM PC Computer,” in Proceedings of 29th International Geological Congress, Kyoto, 1992 (Kyoto, 1992), Vol. 2, p. 1026.

    Google Scholar 

  34. T. V. Gerya and W. V. Maresch, “Metapelites of the Kanskiy Granulite Complex: Kinked P-T Path and a Geodynamic Model,” J. Petrol. 45(2), 1393–1412 (2004).

    Article  Google Scholar 

  35. T. V. Gerya, L. L. Perchuk, D. D. van Reenen, and C. A. Smit, “Two-Dimensional Numerical Modeling of Pressure-Temperature-Time Paths for the Exhumation of Some Granulite Facies Terrenes in the Precambrian,” J. Geodynamics 30(1–2), 17–35 (2000).

    Article  Google Scholar 

  36. E. D. Ghent and M. Z. Stout, “Geobarometry and Geothermometry of Plagioclase-Biotite-Garnet-Muscovite Assemblages,” Contrib. Mineral. Petrol. 76, 92–97 (1981).

    Article  Google Scholar 

  37. N. L. Green and S. I. Usdansky, “Ternary-Feldspar Mixing Relations and Thermobarometry,” Am. Mineral. 71, 1100–1108 (1986a).

    Google Scholar 

  38. N. L. Green and S. I. Usdansky, “Toward a Practical Plagioclase-Muscovite Thermometer,” Am. Mineral. 71, 1109–1117 (1986b).

    Google Scholar 

  39. K. V. Hodges and F. S. Spear, “Geothermometry, Geobarometry and the Al2SiO5 Triple Point at Mt. Moosilauke, New Hampshire,” Am. Mineral. 67, 1118–1134 (1982).

    Google Scholar 

  40. K. V. Hodges and L. W. McKenna, “Realistic Propagation of Uncertainties in Geologic Thermobarometry,” Am. Mineral. 72, 671–680 (1987).

    Google Scholar 

  41. K. V. Hodges and P. D. Crowley, “Error Estimation and Empirical Geothermobarometry for Pelitic System,” Am. Mineral. 70, 702–709 (1985).

    Google Scholar 

  42. T. D. Hoisch, “A Muscovite-Biotite Geothermometer,” Am. Mineral. 74, 565–572 (1989).

    Google Scholar 

  43. T. D. Hoisch, “Empirical Calibration of Six Geobarometers for the Mineral Assemblage Quartz + Muscovite + Biotite + Plagioclase + Garnet,” Contrib. Mineral. Petrol. 104, 225–234 (1990).

    Article  Google Scholar 

  44. T. D. Hoisch, “Equilibria within the Mineral Assemblage Quartz + Muscovite + Biotite + Garnet + Plagioclase and Implications for the Mixing Properties of Octahedrally Coordinated Cations in Muscovite and Biotite,” Contrib. Mineral. Petrol. 108, 43–54 (1991).

    Article  Google Scholar 

  45. M. J. Holdaway, B. L. Dutrow, and R. W. Hinton, “Devonian and Carboniferous Metamorphism in West-Central Maine: The Muscovite-Almandine Geobarometer and the Staurolite Problem Revisited,” Am. Mineral. 73, 20–47 (1988).

    Google Scholar 

  46. T. J. B. Holland and R. Powell, “An Enlarged and Updated Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: The System K2O-Na2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2-CH2-O2,” J. Metamorph. Geol. 6, 89–124 (1990).

    Article  Google Scholar 

  47. T. J. B. Holland R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  48. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: 2. Data and Results,” J. Metamorph. Geol. 3, 343–370 (1985).

    Article  Google Scholar 

  49. G. Hoschek, “Untersuchungen zum Stabilitatsbereich von Chloritoid und Staurolith,” Contrib. Mineral. Petrol. 14, 123–163 (1967).

    Article  Google Scholar 

  50. A. D. Huerta, L. H. Royden, and K. V. Hodges, “The Effects of Accretion, Erosion and Radiogenic Heat on the Metamorphic Evolution of Collisional Orogens,” J. Metamorph. Geol. 17, 349–366 (1999).

    Article  Google Scholar 

  51. A. D. Huerta, L. H. Royden, and K. V. Hodges, “The Thermal Structure of Collisional Orogens as a Response to Accretion, Erosion, and Radiogenic Heating,” J. Geophys. Res. 103, 15287–15302 (1998).

    Article  Google Scholar 

  52. R. A. Jamieson, C. Beaumont, M. H. Nguyen, and B. Lee, “Interaction of Metamorphism, Deformation and Exhumation in Large Convergent Orogens,” J. Metamorph. Geol. 20, 9–24 (2002).

    Article  Google Scholar 

  53. R. A. Jamieson, C. Beaumont, P. Fullsack, and B. Lee, “Barrovian Regional Metamorphism: Where’s the Heat” in What Drives Metamorphism and Metamorphic Reactions, Ed. by P. J. Treloar and P. J. O’Brien, Geol. Soc. London Spec. Publ. 138, 23–45 (1998).

  54. L. K. Kachevskii, G. I. Kachevskaya, and Zh. M. Grabovskaya, 1: 500 000 Geological Map of the Yenisei Range (Krasnoyarskgeols"emka, Krasnoyarsk, 1998) [in Russian].

    Google Scholar 

  55. P. Karabinos and R. Ketchman, “Thermal Structure of Active Thrust Belts,” J. Metamorph. Geol. 6, 559–570 (1988).

    Article  Google Scholar 

  56. D. M. Kerrick, “The Al2SiO5 Polymorphs,” Mineral. Soc. Am. Rev. Mineral. 22, 406 (1990).

    Google Scholar 

  57. E. M. Khabarov, “Evolution of the Riphean Sedimentation Formations of the Eastern Zones of the Yenisei Range,” Geol. Geofiz. 35(10), 34–42 (1994).

    Google Scholar 

  58. E. M. Khabarov, V. A. Ponomarchuk, and I. V. Varaksina, “Sedimentation Basins, Isotopic Geochemistry, and Geodynamic Evolution of the Western Margin of the Siberian Craton in the Riphean,” in Evolution of the Tectonic Processes in the Earth’s Evolution (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004), pp. 244–247 [in Russian].

    Google Scholar 

  59. E. V. Khain, E. V. Bibikova, E. B. Sal’nikova, et al., “The Palaeo-Asian Ocean in the Neoproterozoic and Early Paleozoic: New Geochronologic Data and Paleotectonic Reconstructions,” Precambrian Res. 122, 329–358 (2003).

    Article  Google Scholar 

  60. T. N. Kheraskova, “New Data on the Structure of the Yenisei Range,” Geotektonika, No. 1, 15–27 (1999) [Geotectonics 33, 12–23 (1999)].

  61. M. J. Kohn and F. S. Spear, “Error Propagation for Barometers,” Am. Mineral. 76, 138–147 (1991).

    Google Scholar 

  62. M. J. Kohn, D. L. Orange, F. S. Spear, et al., “Pressure, Temperature, and Structural Evolution of West-Central New Hampshire: Hot Thrusts Over Cold Basement,” J. Petrol. 33, 521–556 (1992).

    Google Scholar 

  63. I. K. Kokodzeev, “Metamorphism of the Rocks of the Transangarian Region of the Yenisei Range with Reference to the Early Precambrian Problems,” in Precambrian Stratigraphy of the Middle Siberia, Ed. by A. A. Shafeev (Nauka, Leningrad, 1983), pp. 149–157 [in Russian].

    Google Scholar 

  64. I. K. Kokodzeev, R. B. Karpinskii, and M. A. Bashilova, 1: 200 000 Geological Map of the USSR, Yenisean Series, Sheet R-46-XXXII (Aerogeologiya, Moscow, 1973) [in Russian].

    Google Scholar 

  65. M. M. Konstantinov, R. F. Dankovtsev, G. S. Simkin, and S. V. Cherkasov, “Deep Structure of the North Enisei Gold District (Russia) and Setting of Ore Deposits,” Geol. Rudn. Mestorozhd. 41(5), 425–436 (1999) [Geol. Ore Dep. 41, 387–397 (1999)].

    Google Scholar 

  66. S. P. Korikovsky, Metamorphic Facies of Metapelites (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  67. T. Ya. Kornev, Evolution of Magmatism and Mineralization with Time (Nedra, Moscow, 1986) [in Russian].

    Google Scholar 

  68. S. N. Korobeinikov, O. P. Polyansky, I. I. Likhanov, et al., “Mathematical Modeling of Overthrusting as a Cause of Andalusite-Kyanite Metamorphic Zoning in the Yenisei Ridge,” Dokl. Akad. Nauk 408(4), 512–516 (2006) [Dokl. Earth Sci. 408, 652–656 (2006)]

    Google Scholar 

  69. A. V. Koziol and R. C. Newton, “Redetermination of the Garnet Breakdown Reaction and Improvement of the Plagioclase-Garnet-Al2SiO5-Quartz Geobarometer,” Am. Mineral. 73, 216–223 (1988).

    Google Scholar 

  70. P. S. Kozlov and G. G. Lepezin, “Petrology, Petrochemistry and Metamorphism of Rocks in the Transangarian Region of the Yenisei Range,” Geol. Geofiz. 36, 3–22 (1995).

    Google Scholar 

  71. P. S. Kozlov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (NITs OIGGM SO RAN, Novosibirsk, 1994).

    Google Scholar 

  72. S. V. Krylov, A. L. Krylova, and B. P. Mishen’kin, “Deep Seismic Studies of the Junction Zone of the Western Siberian Plate and Siberian Platform,” Geol. Geofiz., No. 2, 3–15 (1967).

  73. N. J. Kusznir and R. G. Park, “The Strength of Intraplate Lithosphere,” Phys. Earth Planet. Inter. 36, 224–235 (1984).

    Article  Google Scholar 

  74. G. G. Lepezin, A. D. Nozhkin, and T. V. Gerya, “Thermodynamic Parameters of Metamorphism of the Kanin Group, Yenisei Range,” Geol. Geofiz. 27(9), 11–19 (1986).

    Google Scholar 

  75. I. I. Likhanov and V. V. Reverdatto, “Mass Transfer during Andalusite Replacement by Kyanite in Al-and Fe-Rich Metapelites in the Yenisei Range,” Petrologiya 10(5), 541–558 (2002) [Petrology 10, 479–494 (2002)].

    Google Scholar 

  76. I. I. Likhanov and V. V. Reverdatto, “Mineral Equilibria and P-T Diagram for Fe-Al Metapelites in the KFMASH System (K2O-FeO-MgO-Al2O3-SiO2-H2O),” Petrologiya 13, 81–92 (2005) [Petrology 13, 73–83 (2005)].

    Google Scholar 

  77. I. I. Likhanov and V. V. Reverdatto, “Petrogenetic Grid for Ferruginous-Aluminous Metapelites in the K2O-FeO-MgO-Al2O3-SiO2-H2O System,” Dokl. Akad. Nauk 394(1), 46–50 (2004) [Dokl. Earth Sci. 394, 46–49 (2004)]

    Google Scholar 

  78. I. I. Likhanov, “Evolution of Chemical Composition of Metapelite Minerals during Low-Grade Contact Metamorphism,” Int. Geol. Rev. 30, 878–887 (1988).

    Article  Google Scholar 

  79. I. I. Likhanov, “Mineral Reactions in the Al-and Fe-Rich Hornfels with Reference to the Problem of Stability of Rare Mineral Assemblages of the Contact Equilibrium,” Geol. Geofiz. 44, 305–316 (2003).

    Google Scholar 

  80. I. I. Likhanov, O. P. Polyanskii, P. S. Kozlov, et al., “Replacement of Andalusite by Kyanite with Increasing Pressure at a Low Geothermal Gradient in Metapelites of the Enisei Ridge,” Dokl. Akad. Nauk 375, 509–513 (2000) [Dokl. Earth Sci. 375, 1411–1415 (2000)].

    Google Scholar 

  81. I. I. Likhanov, O. P. Polyanskii, V. V. Reverdatto, et al., “Metamorphic Evolution of Al-rich Metapelites near the Panimba Thrust, Yenisei Range: Mineral Assemblages, P-T Parameters, and Tectonic Model,” Geol. Geofiz. 42(8), 1205–1220 (2001).

    Google Scholar 

  82. I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe-and Al-Rich Metapelites for Thrust Loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia,” J. Metamorph. Geol. 22, 743–762 (2004).

    Article  Google Scholar 

  83. I. I. Likhanov, P. S. Kozlov, N. V. Popov, et al., “Collisional Metamorphism as a Result of Thrusting in the Transangara Region of the Yenisei Ridge,” Dokl. Akad. Nauk. 411(2), 235–239 (2006a) [Dokl. Earth Sci. 411, 1313–1317 (2006a)].

    Google Scholar 

  84. I. I. Likhanov, P. S. Kozlov, O. P. Polyansky, et al., “Neoproterozoic Age of Collisional Metamorphism in the Transangara Region of the Yenisei Ridge (Based on 40Ar/39Ar Data),” Dokl. Akad. Nauk 412(6), 799–803 (2007) [Dokl. Earth Sci. 413, 234–237 (2007)].

    Google Scholar 

  85. I. I. Likhanov, V. S. Sheplev, V. V. Reverdatto, et al., “On Isochemical Nature of Contact Metamorphism of Al-Rich Metapelites: Aureole of the Ayakhta Granitoid Massif, Yenisei Range,” Geol. Geofiz. 40, 90–97 (1999).

    Google Scholar 

  86. I. I. Likhanov, V. S. Sheplev, V. V. Reverdatto, and P. S. Kozlov, “Contact Metamorphism of Ferruginous Metapelites at High Pressure in the Trans-Angara Region, Yenisei Range,” Dokl. Akad. Nauk 362, 673–676 (1998) [Dokl. Earth Sci. 363, 1107–1110 (1998)].

    Google Scholar 

  87. I. I. Likhanov, V. V. Reverdatto, V. S. Sheplev, et al., “Contact Metamorphism of Fe-and Al-Rich Graphitic Metapelites in the Transangarian Region of the Yenisey Ridge, Eastern Siberia, Russia,” Lithos 58(1–2), 55–80 (2001).

    Article  Google Scholar 

  88. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemical Evidence of the Nature of the Protolith of Ferruginous-Aluminous Metapelites in the Kuznetsk Alatau and Yenisei Range,” Geol. Geofiz. 47(1), 119–131 (2006b).

    Google Scholar 

  89. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemistry and Nature of the Protolith of Ferruginous-Aluminous Metapelites in Kuznetsk Alatau,” Dokl. Akad. Nauk 404(5), 671–675 (2005) [Dokl. Earth Sci. 405, 1186–1190 (2005)].

    Google Scholar 

  90. I. I. Likhanov, V. V. Reverdatto, and I. Memmi, “Short-Range Mobilization of Elements in the Biotite Zone of Contact Aureole of the Kharlovo Gabbro Massif (Russia),” Eur. J. Mineral., No. 6, 133–144 (1994).

  91. L. I. Lobkovskii, A. M. Nikishin, and V. E. Khain, Current Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  92. R. J. H. Loosveld and M. A. Etheridge, “A Model for Low-Pressure Facies Metamorphism During Crustal Thickening,” J. Metamorph. Geol. 8, 257–267 (1990).

    Article  Google Scholar 

  93. T. Menard and N. M. Gordon, “Metamorphic P-T Paths from the Eastern Flin-Flon Belt and Kisseynew Domain, Snow Lake, Manitoba,” Can. Mineral. 35, 1093–1115 (1997).

    Google Scholar 

  94. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites (OIGGM SO RAN, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  95. A. D. Nozhkin, “Stages and Evolution of the Continental Crust in the Precambrian of the Southwestern Margin of the Siberian Craton,” in Evolution of the Tectonic Processes in the Earth’s Evolution (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004), pp. 57–60 [in Russian].

    Google Scholar 

  96. A. D. Nozhkin, “Early Proterozoic Continental Margin Complexes of the Angara Fold Belt and Their Metallogenic Specifics,” Geol. Geofiz. 40(11), 1524–1544 (1999).

    Google Scholar 

  97. A. D. Nozhkin, “Geochemical Features of the Early Precambrian Trough Complexes of the Yenisei Range,” in Geology and Radiogeochemistry of Central Siberia, Ed. by A. A. Shafeev (Nauka, Novosibirsk, 1985), pp. 118–140 [in Russian].

    Google Scholar 

  98. A. D. Nozhkin, E. V. Bibikova, O. M. Turkina, and V. A. Ponomarchuk, “Isotopic-Geochronological (U-Pb, Ar-Ar, and Sm-Nd) Studies of Subalkaline Porphyritic Granites of the Tarak Massif of the Yenisei Range,” Geol. Geofiz. 44(9), 881–891 (2003a).

    Google Scholar 

  99. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, et al., “Riphean Granitoid Domes of the Yenisei Range: Geological Structure and U-Pb Isotopic Age,” Geol. Geofiz. 40(9), 1305–1313 (1999).

    Google Scholar 

  100. A. D. Nozhkin, O. M. Turkina, and V. A. Bobrov, “Radioactive and Rare Earth Elements in Metapelites as Indicators of Composition and Evolution of the Precambrian Continental Crust in the Southwestern Margin of the Siberian Craton,” Dokl. Akad. Nauk 390(6), 813–817 (2003b) [Dokl. Earth Sci. 390, 710–713 (2003b)].

    Google Scholar 

  101. G. J. H. Oliver, F. Chen, R. Buchwaldt, and E. Henger, “Fast Tectonometamorphism and Exhumation in the Type Area of the Barrovian and Buchan Zones,” Geology 28, 459–462 (2000).

    Article  Google Scholar 

  102. C. W. Passchier and R. A. J. Trouw, Microtectonics (Springer, Berlin-Heidelberg-New York, 1996), p. 289.

    Google Scholar 

  103. S. R. Paterson and O. T. Tobisch, “Rates and Progress in Magmatic Arcs—Implications for the Timing and Nature of Pluton Emplacement and Wall Rock Deformation,” J. Struct. Geol. 14, 291–300 (1992).

    Article  Google Scholar 

  104. D. R. M. Pattison, “Stability of Andalusite and Sillimanite and the Al2SiO5 Triple Point: Constraints from the Ballachulish Aureole, Scotland,” J. Geol. 100, 423–446 (1992).

    Article  Google Scholar 

  105. S. M. Peacock, “Numerical Constraints on Rates of Metamorphism, Fluid Production, and Fluid Flux during Regional Metamorphism,” Geol. Soc. Am. Bull. 101, 476–485 (1989).

    Article  Google Scholar 

  106. L. L. Perchuk and A. V. Krotov, “Petrology of the Mica Schists of the Tanaelv Belt in the Southern Tectonic Framing of the Lapland Granulite Complex,” Petrologiya 6, 165–196 (1988) [Petrology 6, 149–179 (1988)].

    Google Scholar 

  107. L. L. Perchuk and I. V. Lavrent’eva, “Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite,” in Kinetics and Equilibrium in Mineral Reactions, Ed. by S. K. Saxena (Springer, Berlin-Heidelberg-New York, 1983), pp. 199–239.

    Google Scholar 

  108. L. L. Perchuk, “Metamorphic Evolution of Shields and Fold-Belts,” Geologica Carpathica 36, 179–189 (1985).

    Google Scholar 

  109. L. L. Perchuk, L. Ya. Aranovich, K. K. Podlesskii, et al., “Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR,” J. Metamorph. Geol. 3, 265–310 (1985).

    Article  Google Scholar 

  110. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, et al., “Comparable Petrology and Metamorphic Evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) High-Grade Terrains,” Mineral. Petrol. 69, 69–107 (2000).

    Article  Google Scholar 

  111. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smit, “Formation and Dynamics of Granulite Complexes within Cratons,” Gondwana Research 4(4), 729–732 (2001).

    Article  Google Scholar 

  112. L. L. Perchuk, T. V. Gerya, and A. D. Nozhkin, “Petrology and Retrogression in Granulites of the Kanskiy Formation, Yenisey Range, Eastern Siberia,” J. Metamorph. Geol. 7, 599–617 (1989).

    Article  Google Scholar 

  113. S. A. Pisarevsky, M. T. D. Wingate, C. Powell, et al., “Proterozoic East Gondwana: Supercontinent Assembly and Breakup,” Geol. Soc. London, Spec. Publ. 206, 35–55 (2003).

    Article  Google Scholar 

  114. N. V. Popov, “Tectonic Model of the Early Precambrian Southern Yenisei Range,” Geol. Geofiz. 42(7), 1028–1041 (2001).

    Google Scholar 

  115. E. S. Postel’nikov, “Upper Proterozoic Structures and Formation of the Eastern Slope of the Yenisei Range,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 65, 14–31 (1990).

    Google Scholar 

  116. R. Powell and J. A. Evans, “A New Geobarometer for the Assemblage Biotite-Muscovite-Chlorite-Quartz,” J. Metamorph. Geol. 1, 331–336 (1983).

    Article  Google Scholar 

  117. R. Powell and T. J. B. Holland, “An Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: 3. Application to Geobarometry, Worked Examples and a Computer Program,” J. Metamorph. Geol. 6, 173–204 (1988).

    Article  Google Scholar 

  118. R. Powell and T. J. B. Holland, “Optimal Geothermometry and Geobarometry,” Am. Mineral. 79, 120–133 (1994).

    Google Scholar 

  119. V. V. Reverdatto and V. S. Sheplev, “Geodynamic Factors of the Metamorphism and their Simulation: Review and Analysis of the Problem,” Geol. Geofiz. 39(12), 1679–1692 (1998).

    Google Scholar 

  120. C. Ruppel and K. V. Hodges, “Pressure-Temperature-Time Paths from Two-Dimensional Thermal Models: Prograde, Retrograde and Inverted Metamorphism,” Tectonics 13, 17–44 (1994).

    Article  Google Scholar 

  121. D. M. Shaw, “Geochemistry of Pelitic Rocks. Part III: Major Elements and General Geochemistry,” Geol. Soc. Am. Bull. 67, 913–934 (1956).

    Article  Google Scholar 

  122. Y. Shi and C. Wang, “Two-Dimensional Modeling of the P-T Paths of Regional Metamorphism in Simple Overthrust Terranes,” Geology 15, 1048–1051 (1987).

    Article  Google Scholar 

  123. E. V. Sklyarov, “Mechanism of Exhumation of the Metamorphic Complexes,” Geol. Geofiz. 47(1), 71–75 (2006).

    Google Scholar 

  124. C. A. Smit, D. D. van Reenen, T. V. Gerya, et al., “Structural-Metamorphic Evolution of the Yenisey Range of Eastern Siberia,” Mineral. Petrol. 69, 35–67 (2000).

    Article  Google Scholar 

  125. C. A. Smit, D. D. van Reenen, T. V. Gerya, and L. L. Perchuk, “P-T Conditions of Decompression of the Limpopo High Grade Terrane: Record from Shear Zones,” J. Metamorph. Geol. 19, 249–268 (2001).

    Article  Google Scholar 

  126. F. S. Spear and D. Rumble III, “Pressure, Temperature and Structural Evolution of the Orfordville Belt, West-Central New Hampshire,” J. Petrol. 27, 1071–1093 (1986).

    Google Scholar 

  127. F. S. Spear and J. Selverstone, “Quantitative P-T Paths from Zoned Minerals: Theory and Tectonic Application,” Contrib. Mineral. Petrol. 83, 348–357 (1983).

    Article  Google Scholar 

  128. F. S. Spear, “PTPATH: A Fortran Program to Calculate Pressure-Temperature Paths from Zoned Metamorphic Garnets,” Comput. Geosci. 12, 247–266 (1986).

    Article  Google Scholar 

  129. F. S. Spear, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Mineral. Soc. Am. Monograph, Washington, 1993), p. 799.

    Google Scholar 

  130. F. S. Spear, “Relative Thermobarometry and Metamorphic P-T Paths,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. London, Spec. Publ. 43, 63–82 (1989).

  131. F. S. Spear, D. D. Hickmott, and J. Selverstone, “Metamorphic Consequences of Thrust Emplacement, Fall Mountain, New Hampshire,” Geol. Soc. Am. Bull. 102, 1344–1360 (1990).

    Article  Google Scholar 

  132. F. S. Spear, M. J. Kohn, J. T. Cheney, and F. Florence, “Metamorphic, Thermal, and Tectonic Evolution of Central New England,” J. Petrol. 43, 2097–2120 (2002).

    Article  Google Scholar 

  133. F. S. Spear, S. M. Peacock, M. J. Kohn, and F. Florence, “Computer Programs for Petrologic P-T-t Path Calculations,” Am. Mineral. 76, 2009–2012 (1991).

    Google Scholar 

  134. V. S. Starosel’tsev, A. V. Migurskii, and K. V. Starosel’tsev, “Yenisei Range and Its Juncture with the West Siberian Plate and Siberian Platform,” Geol. Geofiz. 44(1–2), 76–85 (2003).

    Google Scholar 

  135. J. Strehlau and R. Meissner, “Estimation of Crustal Viscosities and Shear Stresses from an Extrapolation of Experimental Steady State Flow Data,” in Compositions, Structure and Dynamics of the Lithosphere-Asthenosphere System (American Geophysical Union, Washington, 1987), pp. 69–87.

    Google Scholar 

  136. V. S. Surkov, V. P. Korobeinikov, S. V. Krylov, et al., “Geodynamic and Sedimentation Settings of the Formation of the Riphean Oil-and-Gas Complexes on the Western Margin of the Siberian Paleocontinent,” Geol. Geofiz. 37(8), 154–165 (1996).

    Google Scholar 

  137. G. H. Symmes and J. M. Ferry, “The Effect of Whole-Rock MnO Content on the Stability of Garnet in Pelitic Schists during Metamorphism,” J. Metamorph. Geol. 10, 221–237 (1992).

    Article  Google Scholar 

  138. Ch. Teyssier and D. L. Whitney, “Gneiss Domes and Orogeny,” Geology 30(12), 1139–1142 (2002).

    Article  Google Scholar 

  139. J. B. Thompson, Jr., “The Graphical Analysis of Mineral Assemblages in Pelitic Schists,” Am. Mineral. 42, 842–858 (1957).

    Google Scholar 

  140. E. N. Ushakova, “On Genetic Relations of Sillimanite, Andalusite, and Disthene in Crystalline Schists from the Upper Reaches of the Chapa River,” Geol. Geofiz. 7(3), 67–80 (1966).

    Google Scholar 

  141. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and Evolution of the Granitoid Magmatism of the Yenisei Range,” Geol. Geofiz. 47(1), 35–52 (2006).

    Google Scholar 

  142. V. A. Vernikovsky, A. E. Vernikovskaya, and A. I. Chernykh, “Porozhnaya Granitoids of the Enisei Ophiolite Belt: Indicators of Neoproterozoic Events on the Enisei Ridge,” Dokl. Akad. Nauk 381(6), 806–810 (2001) [Dokl. Earth Sci. 381, 1043–1046 (2001)].

    Google Scholar 

  143. V. A. Vernikovsky, A. E. Vernikovskaya, A. B. Kotov, et al., “Neoproterozoic Accretionary and Collisional Events on the Western Margin of the Siberian Craton: New Geological and Geochronological Evidence from the Yenisey Ridge,” Tectonophysics 375(1–4), 147–168 (2003).

    Article  Google Scholar 

  144. N. I. Volkova and E. V. Sklyarov, “High-Pressure Complexes of the Central-Asian Fold Belt: Geodynamic Setting, Geochemistry, and Geodynamic Implications,” Geol. Geofiz. 48, 109–119 (2007).

    Google Scholar 

  145. M. I. Volobuev, N. I. Stupnikova, and S. I. Zykov, “Yenisei Range,” in Geochronology of USSR. Vol. 1. Precambrian, Ed. by Yu. I. Polovinkina (Nedra, Leningrad, 1973), pp. 189–201 [in Russian].

    Google Scholar 

  146. M. I. Volobuev, S. I. Zykov, and N. I. Stupnikova, “Geochronology of the Precambrian Formations of the Sayan-Yenisei Region of Siberia,” in Current Problems of Modern Geochronology (Nauka, Moscow, 1976), pp. 96–123 [in Russian].

    Google Scholar 

  147. M. I. Volobuev, S. I. Zykov, and N. I. Stupnikova, “Yenisei Fold System,” in Precambrian Geochronology of the Siberian Platform and its Folded Framing, Ed. by M. M. Manuilova (Nauka, Leningrad, 1968), pp. 266–274 [in Russian].

    Google Scholar 

  148. D. L. Whitney, R. B. Miller, and S. R. Paterson, “P-T-t Evidence for Mechanisms of Vertical Tectonic Motion in a Contractional Orogen: North-Western US and Canadian Cordillera,” J. Metamorph. Geol. 17, 75–90 (1999).

    Article  Google Scholar 

  149. B. F. Windley, A. Kroner, J. H. Guo, et al., “Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution,” J. Geol. 110, 719–737 (2002).

    Article  Google Scholar 

  150. S. Wolfram, The Mathematica Book (Wolfram Media Inc., Champaign, 2003).

    Google Scholar 

  151. E. A. Zvyagina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Izd-vo IGU, Irkutsk, 1989).

    Google Scholar 

  152. D. D. van Reenen, L. L. Perchuk, C. A. Smit, et al., “Structural and P-T Evolution of a Major Cross Fold in the Central Zone of the Limpopo High-Grade Terrain, South Africa,” J. Petrol. 45, 1413–1439 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Original Russian Text © I.I. Likhanov, V.V. Reverdatto, P.S. Kozlov, N.V. Popov, 2008, published in Petrologiya, 2008, Vol. 16, No. 2, pp. 148–173.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S. et al. Collision metamorphism of precambrian complexes in the Transangarian Yenisei Range. Petrology 16, 136–160 (2008). https://doi.org/10.1134/S0869591108020021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591108020021

Keywords

Navigation