Skip to main content
Log in

Order/disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction textures in granulites

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Based on a consistent set of empirical interatomic potentials, static structure energy calculations of various Al/Si configurations in the supercell of Mg-cordierite and Monte Carlo simulations the phase transition between the orthorhombic and hexagonal modifications of cordierite (Crd) is predicted at 1623 K. The temperature dependences of the enthalpy, entropy, and free energy of the Al/Si disorder were calculated using the method of thermodynamic integration. The simulations suggest that the commonly observed crystallization of cordierite in the disordered hexagonal form could be related to a tendency of Al to occupy T1 site, which is driven by local charge balance. The increase in the Al fraction in the T1 site over the ratio of 2/3(T1): 1/3(T2), that characterizes the ordered state, precludes formation of the domains of the orthorhombic phase. This intrinsic tendency to the crystallization of the metastable hexagonal phase could have significantly postponed the formation of the association of orthorhombic cordierite and orthopyroxene over the association of quartz and garnet in metapelites subjected to granulite facies metamorphism. The textures of local metasomatic replacement (the formation of Crd + Opx Or Spr + Crd symplectites between the grains of garnet and quartz) indicate the thermodynamic instability of the association of Qtz + Grt at the moment of the metasomatic reaction. This instability could have been caused by the difficulty of equilibrium nucleation of orthorhombic cordierite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ya. Aranovich and K. K. Podlesskii, “Geothermobarometry of High-Grade Metapelites: Simultaneously Operating Reactions,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, B. W. D. Yardley, B. R. Cliff, London Geol. Soc. Spec. Publ. 42, 41–65 (1989).

  2. J. R. Ashworth and A. D. Chambers, “Symplectitic Reaction in Olivine, the Controls of Intergrowth Spacing in Symplectites,” J. Petrol. 41, 285–304 (2000).

    Article  Google Scholar 

  3. G. Balassone, E. Franco, C. A. Mattia, and R. Puliti, “Indialite in Xenolithic Rocks from Somma-Vesuvius Volcano (Southern Italy): Crystal Chemistry and Petrogenetic Features,” Am. Mineral. 89, 1–6 (2004).

    Google Scholar 

  4. J. D. Bass, “Elasticity of Minerals, Glasses and Melts,” in Mineral Physics and Crystallography. A Handbook of Physical Constants, Ed. by Th. J. Ahrens, American Geophys Union. AGU Reference Shelf. Ser. 2, 45–63 (1995).

  5. U. Becker and K. Pollock, “Molecular Simulations of Interfacial and Thermodynamic Mixing Properties of the Grossular-Andradite Garnets,” Phys. Chem. Miner. 29, 52–64 (2002).

    Article  Google Scholar 

  6. U. C. Bertram, V. Heine, M. Leslie, and G. D. Price, “Computer Modelling of Al/Si Ordering in Sillimanite,” Phys. Chem. Miner. 17, 326–333 (1990).

    Article  Google Scholar 

  7. A. Bosenick, M. T. Dove, E. R. Myers, et al., “Computational Methods for the Study of Energies of Cation Distribution: Applications to Cation-Ordering Phase Transitions and Solid Solutions,” Mineral. Mag. 65, 193–219 (2001).

    Article  Google Scholar 

  8. T. S. Bush, J. D. Gale, C. R. A. Catlow, and P. D. Battle, “Self-Consistent Interatomic Potentials for the Simulation of Binary and Ternary Oxides,” J. Mater. Chem. 4, 831–837 (1994).

    Article  Google Scholar 

  9. M. A. Carpenter, A. Putnis, A. Navrotsky, and J. D. C. McConnell, “Enthalpy Effects Associated with Al/Si Ordering in Anhydrous Magnesian Cordierite,” Geochim. Cosmochim. Acta 47, 899–906 (1983).

    Article  Google Scholar 

  10. M. Cho and J. J. Fawcett, “Morphologies and Growth Mechanisms of Synthetic Mg-Chlorite and Cordierite,” Am. Mineral. 71, 78–84 (1986).

    Google Scholar 

  11. J. W. D. Connolly and A. R. Williams, “Density-Functional Theory Applied to Phase Transformations in Transition-Metal Alloys,” Phys. Rev. 27, 5169–5172 (1983).

    Article  Google Scholar 

  12. B. G. Dick and A. W. Overhauser, “Theory of Dielectric Constants of Alkali Halide Crystals,” Phys. Rev. 112, 90–103 (1958).

    Article  Google Scholar 

  13. J. D. Gale and A. L. Rohl, “The General Utility Lattice Program (GULP),” Mol. Simul. 29, 291–341 (2003).

    Article  Google Scholar 

  14. J. D. Gale, “GULP—A Computer Program for Symmetry Adapted Simulations of Solids,” J. Chem. Soc.: Faraday Trans. 93, 629–637 (1997).

    Article  Google Scholar 

  15. T. V. Gerya, L. L. Perchuk, D. D. van Reenen, and C. A. Smit, “Two-Dimensional Numerical Modeling of Pressure-Temperature-Time Paths for the Exhumation of Some Granulite Facies Terrains in the Precambrian,” J. Geodynam. 30, 17–35 (2000).

    Article  Google Scholar 

  16. S. L. Harley and D. P. Carrington, “The Distribution of H2O between Cordierite and Granitic Melt: H2O Incorporation in Cordierite and Its Application to High-Grade Metamorphism and Crustal Anatexis,” J. Petrol. 42, 1595–1620 (2001).

    Article  Google Scholar 

  17. S. L. Harley, P. Thompson, B. J. Hensen, and I. S. Buick, “Cordierite as a Sensor of Fluid Conditions in High-Grade Metamorphism and Crustal Anatexis,” J. Metamorph. Geol. 20, 71–86 (2002).

    Article  Google Scholar 

  18. S. L. Harley, “The Origins of Granulites: a Metamorphic Perspective,” Geol. Mag. 126, 215–247 (1989).

    Article  Google Scholar 

  19. M. Kitamura and H. Yamada, “Origin of Sector Trilling in Cordierite in Daimonji Hornfels”, Contrib, Mineral. Petrol. 97, 1–6 (1987).

    Article  Google Scholar 

  20. M. Kitamura and Y. Hiroi, “Indialite from Unazuki Pelitic Schist, Japan, and Its Transition Texture to Cordierite,” Contrib. Mineral. Petrol. 80, 110–116 (1982).

    Article  Google Scholar 

  21. S. P. Korikovskii, Metamorphic Facies of Metapelites (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. D. S. Korzhinskii, Theory of Metasomatic Zoning (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  23. K. Langer and W. Schreyer, “Infrared and Powder X-Ray Diffraction Studies of the Polymorphism of Cordierite,” Am. Mineral. 54, 1442–1459 (1969).

    Google Scholar 

  24. G. V. Lewis and C. R. A. Catlow, “Potential Models for Ionic Oxides,” J. Physics. Ser. C: Solid State Physics 18, 1149–1161 (1985).

    Article  Google Scholar 

  25. T. Malcherek, M. C. Domeneghetti, V. Tazzoli, et al., “Structural Properties of Ferromagnesian Cordierites,” Am. Mineral. 86, 66–79 (2001).

    Google Scholar 

  26. N. I. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys. 21, 1087–1092 (1953).

    Article  Google Scholar 

  27. E. R. Myers, V. Heine, and M. T. Dove, “Some Consequences of Al/Al Avoidance in the Ordering of Al/Si Tetrahedral Framework Structures,” Phys. Chem. Mineral. 25, 457–464 (1998).

    Article  Google Scholar 

  28. R. C. Newton, “An Experimental Determination of the High-Pressure Stability Limits of Magnesian Cordierite under Wet and Dry Conditions,” J. Geol. 80, 398–420 (1972).

    Article  Google Scholar 

  29. A. Patel, G. D. Price, and M. J. Mendelsson, “A Computer-Simulation Approach To Modeling the Structure, Thermodynamics and Oxygen Isotope Equilibria of Silicates,” Phys. Chem. Mineral. 17, 690–699 (1991).

    Google Scholar 

  30. L. L. Perchuk and I. V. Lavrent’eva, “Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite,” in Advances in Physical Geochemistry (Springer, New York, 1983), pp. 199–239.

    Google Scholar 

  31. L. L. Perchuk, “Fluids in the Lower Crust and Upper Mantle of the Earth,” Vestnik MGU, Ser. Geol., No. 4, 25–36 (2000).

  32. L. L. Perchuk, “Configuration of P−T Trends as a Record of High-Temperature Polymetamorphism,” Dokl. Akad. Nauk 401, 217–220 (2005) [Dokl. Earth. Sci. 401, 311–314 (2005)].

    Google Scholar 

  33. L. L. Perchuk, “P-T-Fluid Regimes of Metamorphism and Related Magmatism with Specific Reference to the Baikal Lake Granulites,” in Evolution of Metamorphic Belts, Ed. by S. Daly, D. W. D. Yardley, and B. Cliff, Geol. Soc. London Spec. Publ. 2(20), 275–291 (1989).

  34. L. L. Perchuk, “Thermodynamic Control of Metamorphic Processes,” in Energetics of Geological Processes, Ed. by S. K. Saxena and S. Bhattacharji (Springer, New York, 1977), pp. 285–352.

    Google Scholar 

  35. L. L. Perchuk, D. A. Tokarev, D. D. van Reenen, et al., “Dynamic and Thermal History of the Vredefort Explosion Structure in the Kaapvaal Craton, South Africa,” Petrologiya 10, 451–492 (2002) [Petrology 10, 395-432 (2002)].

    Google Scholar 

  36. L. L. Perchuk, D. A. Varlamov, and D. D. van Reenen, “A Unique Record of the P-T History of High-Grade Polymetamorphism,” Dokl. Akad. Nauk 409(5), 962–968 (2006a) [Dokl. Earth Sci. 409, 958–962 (2006a)].

    Google Scholar 

  37. L. L. Perchuk, L. V. Sazonova, D. D. van Reenen, and T. V. Gerya, “Ultramylonites and Their Significance for the Understanding of the History of the Vredefort Impact Structure, South Africa,” Petrologiya 11(2), 128–144 (2003) [Petrology 11, 114–129 (2003)].

    Google Scholar 

  38. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, et al., “The Limpopo Metamorphic Belt, South Africa: 2. Decompression and Cooling Regimes of Granulites and Adjacent Rocks of the Kaapvaal Craton,” Petrologiya 4, 619–648 (1996) [Petrology 4, 571–599 (1996)].

    Google Scholar 

  39. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and S. A. Smit, “PT Paths and Problems of High-Temperature Polymetamorphism,” Petrologiya 14, 131–167 (2006b) [Petrology 14, 117–153 (2006b)].

    Google Scholar 

  40. L. L. Perchuk, T. V. Gerya, D. D. van Reenen, and C. A. Smith, “Formation, Dynamics of Granulite Complexes within Cratons,” Gondwana Res. 4, 729–732 (2001).

    Article  Google Scholar 

  41. K. K. Podlesskii, “Hypersthene in Assemblage with Sillimanite and Quartz as an Indicator of Metamorphic Conditions,” Dokl. Akad. Nauk 389(1), 1–4 (2003) [Dokl. Earth Sci. 389, 248–151 (2003)].

    Google Scholar 

  42. N. V. Popov and A. A. Tomilenko, “Volatile Content in Cordierites as Indicator of Fluid Regime of Metamorphism,” in Model of the Metamorphic Evolution at Shields and Fold Systems (Novosibirsk, 1987), pp. 14–18 [in Russian].

  43. A. Putnis and T. J. B. Holland, “Sector Trilling in Cordierite, Equilibrium Overstepping in Metamorphism,” Contrib. Mineral. Petrol. 9, 265–272 (1986).

    Article  Google Scholar 

  44. A. Putnis and V. L. Vinograd, “Principles of Solid State NMR Spectroscopy, Applications to Determining Local Order in Minerals,” in Microscopic Properties and Processes in Minerals, Ed. by K. Wright and R. Catlow, NATO Science Series 543, 389–425 (1999).

  45. A. Putnis, Introduction to Mineral Sciences (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  46. A. Putnis, C. A. Fyfe, and G. C. Gobbi, “Al, Si Ordering in Cordierite Using “Magic Angle Spinning” NMR I. 29Si Spectra of Synthetic Cordierites,” Phys. Chem. Mineral. 12, 211–216 (1985).

    Article  Google Scholar 

  47. A. Putnis, E. Salje, S. A. T. Redfern, et al., “Structural State of Mg-Cordierite I: Order Parameters from Synchrotron X-Ray and NMR Data,” Phys. Chem. Mineral. 14, 446–456 (1987).

    Article  Google Scholar 

  48. J. M. Sanchez, F. Ducastelle, and D. Gratias, “Generalized Cluster Description of Multicomponent Systems,” Physica 128A, 334–350 (1984).

    Google Scholar 

  49. W. Schreyer and H. S. Yoder, “The System Mg-Cordierite-H2O and Related Rocks,” Neues Jahrb. Mineral., Abh. 101, 271–342 (1964).

    Google Scholar 

  50. W. Schreyer and J. F. Schairer, “Compositions and Structural States of Anhydrous Mg-Cordierites: A Reinvestigation of the Central Part of the System MgO-Al2O3-SiO2,” J. Petrol. 2, 324–406 (1961).

    Google Scholar 

  51. G. B. Skippen and A. E. Gunter, “The Thermodynamic Properties of H2O in Magnesium and Iron Cordierite,” Contrib. Mineral. Petrol. 124, 82–89 (1996).

    Article  Google Scholar 

  52. R. M. Smart and F. P. Glasser, “Stable Cordierite Solid Solution in the MgO-Al2O3-SiO2 System: Composition, Polymorphism and Thermal Expansion,” Sci. Ceram. 9, 256–263 (1977).

    Google Scholar 

  53. C. A. Smit, D. D. van Reenen, T. V. Gerya, and L. L. Perchuk, “P-T Conditions of Decompression of the Limpopo High-Grade Terrain: Record from Shear Zones,” J. Metamorph. Geol. 19, 249–268 (2001).

    Article  Google Scholar 

  54. F. S. Spear, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Mineral. Soc. Am. Publ., Washington, 1993).

    Google Scholar 

  55. S. Thayaparam, V. Heine, M. T. Dove, and K. T. Hammonds, “A Computational Study of Al/Si Ordering in Cordierite,” Phys. Chem. Mineral. 23, 127–139 (1996).

    Google Scholar 

  56. K. Toohill, S. Siegesmund, and J. D. Bass, “Sound Velocities, Elasticity of Cordierite and Implications for Deep Crustal Seismic Anisotropy,” Phys. Chem. Mineral. 26, 333–343 (1999).

    Article  Google Scholar 

  57. F. J. Torres and J. Alarcon, “Phase Evolution by Thermal Treatment of Equimolar Cobalt-Magnesium Cordierite Glass Powders,” J. Europ. Ceram. Soc. 4, 681–691 (2004).

    Google Scholar 

  58. V. S. Urusov, V. L. Tauson, and V. V. Akimov, Solid State Geochemistry (GEOS, Moscow, 1997) [in Russian].

    Google Scholar 

  59. D. D. van Reenen, L. L. Perchuk, C. A. Smit, et al., “Structural and P-T Evolution of a Major Cross Fold in the Central Zone of the Limpopo High-Grade Terrain, South Africa,” J. Petrol. 45, 1413–1439 (2004).

    Article  Google Scholar 

  60. D. Vielzeuf and Ph. Vidal, Granulites and Crustal Evolution, NATO ASI Series, Series C, Kluwer, Dordrecht 311, 257–289 (1990).

  61. V. L. Vinograd, B. Winkler, A. Putnis, et al., “Thermodynamics of Pyrope-Majorite, Mg3Al2Si3O12-Mg4Si4O12, Solid Solution from Atomistic Model Calculations,” Molecul. Simul. 32(2), 86–99 (2006).

    Google Scholar 

  62. V. L. Vinograd, M. H. F. Sluiter, B. Winkler, et al., “Thermodynamics of Mixing, Ordering in Silicates, Oxides from Static Lattice Energy, ab Initio Calculations,” in First-Principles Simulations: Perspectives and Challenges in Mineral Sciences, Ed. by M. Warren, A. Oganov, and B. Winkler (Deutsche Gesellschaft für Kristallographie. Berichte aus Arbeitskreisen der DFK, 14, 2004), pp. 143–151.

  63. M. C. Warren, M. T. Dove, E. R. Myers, et al., “Monte Carlo Methods for the Study of Cation Ordering in Minerals,” Mineral. Mag. 65, 221–224 (2001).

    Article  Google Scholar 

  64. B. Winkler, M. T. Dove, and M. Leslie, “Static Lattice Energy Minimization and Lattice Dynamics Calculations on Aluminosilicate Minerals,” Am. Mineral. 76, 313–331 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Vinograd.

Additional information

Original Russian Text © V.L. Vinograd, L.L. Perchuk, T.V. Gerya, A. Putnis, B. Winkler, J.D. Gale, 2007, published in Petrologiya, 2007, Vol. 15, No. 5, pp. 459–473.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinograd, V.L., Perchuk, L.L., Gerya, T.V. et al. Order/disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction textures in granulites. Petrology 15, 427–440 (2007). https://doi.org/10.1134/S0869591107050013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107050013

Keywords

Navigation