Skip to main content
Log in

Spin light of the electron in dense matter

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We derive the modified Dirac equation for an electron subject to Standard-Model interaction with nuclear matter. Exact solutions to this equation and the electron energy spectrum in matter are obtained. This establishes rather a powerful method of studying different processes which are possible when electrons propagate in background matter. On this basis, we study in detail the spin light of the electron (SLE) in nuclear matter, a new type of electromagnetic radiation which can be emitted by electronsmoving in dense matter. It is expected that this introduced mechanism of electromagnetic radiation can have applications in astrophysics and cosmology (in particular, the SLE can be turned on when a relativistic electron penetrates into the dense matter of a neutron star). The developed theory of new mechanism of electromagnetic radiation by an electron in nuclear matter can be applied in a straightforward manner to the case of an electron propagating through a dense neutrino gas. The SLE in neutrino environment may take place during supernova explosions and gamma-ray bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Furry, Phys. Rev. 81, 115 (1951).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. A. A. Sokolov and I. M. Ternov, Synchrotron Radiation (Pergamon press, Oxford, 1968).

    Google Scholar 

  3. A. Studenikin and A. Ternov, Phys. Lett. 608, 107 (2005); hep-ph/041097, hep-ph/041096, hepph/0412408.

    Google Scholar 

  4. A. Grigoriev et al., Phys. Lett. B 622, 199 (2005); Grav. Cosmol. 11, 132 (2005); hep-ph/0502231.

    ADS  Google Scholar 

  5. A. Grigoriev et al., Phys. Atom. Nucl. 69, 1940 (2006).

    Article  ADS  Google Scholar 

  6. A. Studenikin, J. Phys. A 39, 6769 (2006); hepph/0511311.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. A. Grigoriev et al., Grav. Cosmol. 11, 132 (2005); hep-ph/0502231.

    MATH  ADS  Google Scholar 

  8. A. Grigoriev et al., in: Particle Physics in the Year of 250th Anniversary of Moscow University, Ed. A. Studenikin (World Scientific, Singapore, 2006), p. 73; hep-ph/0611103.

    Google Scholar 

  9. A. Studenikin, Ann. Fond. de Broglie 31, 2 (2006); hep-ph/0611100.

    MathSciNet  Google Scholar 

  10. A. Studenikin, in: Proc. 22nd Int. Conf. on Neutrino Physics and Astrophysics, hep-ph/0611104.

  11. A. Lobanov and A. Studenikin, Phys. Lett. B 564, 27 (2003); 601, 171 (2004); M. Dvornikov et al., Int. J. Mod. Phys. D 14, 309 (2005).

    Article  ADS  Google Scholar 

  12. A. Lobanov, Phys. Lett. B 619, 136 (2005); Dokl. Phys. 50, 286 (2005).

    Article  ADS  Google Scholar 

  13. A. Studenikin, Nucl. Phys. (Proc. Suppl.) B 143, 570 (2005).

    Article  ADS  Google Scholar 

  14. P. Mannheim, Phys. Rev. D 37, 1935 (1988).

    Article  ADS  Google Scholar 

  15. D. Nötzold and G. Raffelt, Nucl. Phys. B 307, 924 (1988).

    Article  ADS  Google Scholar 

  16. J. Nieves, Phys. Rev. D 40, 866 (1989).

    Article  ADS  Google Scholar 

  17. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S.Mikheyev and A. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).

    Article  ADS  Google Scholar 

  18. L.N. Chang and R.K. Zia, Phys. Rev. D 38, 1669 (1988).

    Article  ADS  Google Scholar 

  19. J. Pantaleone, Phys. Lett. B 268, 227 (1991); Phys. Rev. D 46, 510 (1992); K. Kiers and N. Weiss, Phys. Rev. D 56, 5776 (1997); K. Kiers and M. Tytgat, Phys. ev. D 57, 5970 (1998).

    Article  ADS  Google Scholar 

  20. Z. Berezhiani and M. Vysotsky, Phys. Lett. B 199, 281 (1987); Z. Berezhiani and A. Smirnov, Phys. Lett. B 220, 279 (1989); C. Giunti et al., Phys. Rev. D 45, 1557 (1992); Z. Berezhiani and A. Rossi, Phys. Lett. B 336, 439 (1994).

    Article  ADS  Google Scholar 

  21. V. Oraevsky et al., Phys. Lett. B 227, 255 (1989).

    Article  ADS  Google Scholar 

  22. W. Haxton and W.-M. Zhang, Phys. Rev. D 43, 2484 (1991).

    Article  ADS  Google Scholar 

  23. A. Loeb, Phys. Rev. Lett. 64, 115 (1990).

    Article  ADS  Google Scholar 

  24. M. Kachelriess, Phys. Lett. B 426, 89 (1998).

    Article  ADS  Google Scholar 

  25. A. Kusenko and M. Postma, Phys. Lett. B 545, 238 (2002).

    Article  ADS  Google Scholar 

  26. H. B. J. Koers, hep-ph/0409259.

  27. H. Bethe, Theory of Nuclear Matter (Palo Alto, California, 1971).

    Google Scholar 

  28. I. M. Ternov, Sov. Phys. Usp. 38, 405 (1995); V. A. Bordovitsyn et al., Sov. Phys. Usp. 38, 1037 (1995).

    Google Scholar 

  29. D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 11602 (1998).

    Article  ADS  Google Scholar 

  30. V. Ch. Zhukovsky et al., Phys. Rev. D 73, 065016 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grigoriev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigoriev, A., Shinkevich, S., Studenikin, A. et al. Spin light of the electron in dense matter. Gravit. Cosmol. 14, 248–255 (2008). https://doi.org/10.1134/S0202289308030079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289308030079

PACS numbers

Navigation