Skip to main content
Log in

Geochemical composition of natural waters near a storage site of low-activity radioactive wastes

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Sampling data on subsoil and surface water near a storage site of low-activity liquid radioactive wastes, receiving neutralized uranium-containing pulps are given. Thermodynamic calculations are used to describe the behavior of major polluting and petrogenic components in the drainage system, allowing the occurrence forms of elements in solution and/or solid phase to be determined. The results suggest a positive effect of natural geochemical barriers hampering the process of uranium migration into natural waters. Over-all, the technogenic-natural system under consideration was found to effectively cope with the removal of uranium-containing compounds from industrial water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gas’kova, O.L., Geochemical Features and Physicochemical Parameters of Hypergene Processes in Technogenic Zones, Doctoral (Geol.-min.) Dissertation, Novosibirsk: Inst. of Geology and Mineralogy, SB RAS, 2005.

    Google Scholar 

  2. Gas’kova, O.L., Semiempirical Model for the Description of Sorption Equilibria on Clay Mineral Surfaces, Geochem. Int. 2009, no. 6, pp. 611–622.

  3. Iskra, A.A. and Bakhurov, V.G., Estestvennye radionuklidy v biosfere (Natural Radinuclides in Biosphere), Moscow: Energoizdat, 1981.

    Google Scholar 

  4. Karbonaty: mineralogiya i geokhimiya (Carbonates: Mineralogy and Geochemistry), Reader, R.J., Ed., Moscow: Mir, 1987.

    Google Scholar 

  5. Kovalev, V.P., Mel’gunov, S.V., Puzankov, Yu.M., and Raevskii, V.P., Predotvrashchenie neupravlyaemogo rasprostraneniya radionuklidov v okruzhayushchuyu sredu (Prevention of Uncontrollable Spread of Radionuclides in the Environment), Novosibirsk: NITs OIGGM SO RAN, 1996.

    Google Scholar 

  6. Krainov, S.R. and Zakutin, V.P., Geochemical-Ecological State of Groundwater in Russia (The Causes and Trends in Groundwater Chemistry Changes), Geokhimiya, 1994, no. 3, pp. 312–329.

  7. Metody geokhimicheskogo modelirovaniya i prognozirovaniya v gidrogeologii (Methods of Geochemical Modeling and Prediction in Hydrogeology), Krainov, S.R., Shvarov, Yu.V., Grichuk, D.V., et al., Eds., Moscow: Nedra, 1988.

    Google Scholar 

  8. Osnovy gidrogeologii (Fundamentals of Hydrogeology), Shvartsev, S.L., Ed., Novosibirsk: Nauka, 1982, vol. 2.

    Google Scholar 

  9. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Guide on Chemical Analysis of Continental Surface Water), Semenov, A.D., Ed., Leningrad: Gidrometeoizdat, 1977.

    Google Scholar 

  10. Tkachev, V.V., Behavior and Occurrence Forms of Plutonium in Subsoil Waters, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: GEOKhI RAN, 2008.

    Google Scholar 

  11. Shvarov, Yu.V., Algorithmization of the Numeric Equilibrium Modeling of Dynamic Geochemical Processes, Geochem. Int., 1999, no. 6, pp. 571–576.

  12. Shvartsev, S.L., Gidrogeokhimiya zony giperegeneza (Hydrochemistry of Hypergene Zone), Moscow: Nedra, 1998.

    Google Scholar 

  13. Ball, J.W. and Nordstrom, D.K., User’s manual for WATEQ4F, with revised thermodynamic database. Menlo Park: U.S. Geological Survey, 1991–1992.

  14. Bradbury, M.H. and Baeyens, B., Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 4, pp. 875–892.

    Article  Google Scholar 

  15. Choppin, G.R., Actinide Speciation in Aquatic System, Marine Geochem, 2006, vol. 99,Is. 1–4, pp. 83–92.

    Article  Google Scholar 

  16. Grenthe, I., Fuger, J., and Konings, R.J.M., Chemical Thermodynamics of Uranium, Amsterdam: Elsevier, 1992, vol. 1.

    Google Scholar 

  17. Gu, B., Brooks, S.C., Roh, Y., and Jardine, P.M., Geochemical Reactions and Dynamics during Titration of a Contaminated Groundwater with High Uranium, Aluminum, and Calcium, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 15, pp. 2749–2761.

    Article  Google Scholar 

  18. Hummel, W., Berner, U., Curti, E., et al., NAGRA (National Cooperative for the Disposal of Radioactive Waste) /PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16. Wettingen: PSI, 2002.

    Google Scholar 

  19. Hummel, W., Glaus, M.A., and Van Loon, L.R., Trace Metal-Humate Interactions. II. The “Conservative Roof” Model and Its Application, Applied Geochem, 2000, vol. 15,Is. 7, pp. 975–1001.

    Article  Google Scholar 

  20. Kirishima, A., Onishi, Y., Sato, N., and Tochiyama, O., Thermodynamic Study on the U(VI) Complexation with Dicarboxylates by Calorimetry, Radiochchim. Acta, 2008, vol. 96,Is. 9–11, pp. 581–589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.L. Gas’kova, A.E. Boguslavskii, T.G. Sirotenko, 2011, published in Vodnye Resursy, 2011, Vol. 38, No. 5, pp. 553–563.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gas’kova, O.L., Boguslavskii, A.E. & Sirotenko, T.G. Geochemical composition of natural waters near a storage site of low-activity radioactive wastes. Water Resour 38, 597–607 (2011). https://doi.org/10.1134/S0097807811050071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807811050071

Keywords

Navigation