Skip to main content
Log in

Determination of the number of degrees of freedom for chemical-engineering objects: Distillation column

  • Chemical Engineering Science
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various methods of calculation of the number of independent variables (degrees of freedom) are analyzed for chemical-engineering objects, including continuous distillation columns with different organizations of external flows and auxiliary equipments. The number of degrees of freedom is demonstrated to be invariant with respect to the type of calculation for the distillation process (design, confirmatory, or designconfirmatory calculation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilliland, S.R. and Reed, C.F., Degrees of Freedom in Multicomponent Absorption and Rectification Columns, Ind. Eng. Chem., 1942, vol. 34, no. 5, pp. 551–557.

    Article  CAS  Google Scholar 

  2. Gibbs, J.W., Termodinamika: Statisticheskaya mekhanika (Thermodynamics: Statistical Mechanics), Moscow: Nauka, 1982.

    Google Scholar 

  3. Serafimov, L.A., Degrees of Freedom of Thermodynamic Systems, Uch. Zap. MITKhT, 1999, issue 1, pp. 4–12; 2000, issue 2, pp. 13–14.

  4. Benedek, P. and Laszlo, A., Grundlagen des Chemieingenieurwesens, Leipzig: Grundstoffindustrie, 1967.

    Google Scholar 

  5. Kwauk, M., Specification of Design Variables, AIChE J., 1956, vol. 2, pp. 240–250.

    Article  CAS  Google Scholar 

  6. Kwauk, M., Specification of Design Variables, in Equilibrium-Stage Separation Operations in Chemical Engineering by Henley, E.J. and Seader J.D., New York: Wiley, 1956, pp. 239–269.

    Google Scholar 

  7. Seader, J.D. and Henley, E.J., Separation Process Principles, New York: Wiley, 1998, pp. 163–271.

    Google Scholar 

  8. Hanson, D.N., Duffin, J.H., and Somerville, G.F., Computation of Multistage Separation Processes, New York: Reinhold, 1962, ch. 1.

    Google Scholar 

  9. Smith, B., Design of Equilibrium Stage Processes, New York: McGraw-Hill, 1963, ch. 3, pp. 120–138.

    Google Scholar 

  10. Henley, E.J. and Staffin, H.K., Stagewise Process Design, New York: Wiley, 1963.

    Google Scholar 

  11. Korzhinskii, D.S., Phase Rule and Systems with Quite Mobile Components, Dokl. Akad. Nauk SSSR, 1949, vol. 1, no. 3, pp. 361–364.

    Google Scholar 

  12. Palatnik, L.S. and Landau, A.I., Fazovye ravnovesiya v mnogokomponentnykh sistemakh (Phase Equilibria in Multicomponent Systems), Kharkov: Khar’kov. Gos. Univ., 1963.

    Google Scholar 

  13. Storonkin, A.V., Termodinamika geterogennykh sistem (Thermodynamics of Heterogeneous Systems), Leningrad: Leningr. Gos. Univ., 1967, parts I, II.

    Google Scholar 

  14. Petlyuk, F.B. and Serafimov, L.A., Mnogokomponentnaya rektifikatsiya: Teoriya i raschet (Multicomponent Distillation: Theory and Design), Moscow: Khimiya, 1983.

    Google Scholar 

  15. Underwood, A.J., Fractional Distillation of Ternary Mixtures, J. Inst. Petrol., 1954, vol. 31, no. 256, pp. 111–117.

    Google Scholar 

  16. Acrivos, A. and Amundson, N.R., On Steady State Fractionation of Multicomponent and Complex Mixture in Ideal Cascade, Eng. bg Sci, 1955, vol. 4, pp. 29–41.

    Article  CAS  Google Scholar 

  17. Kolokol’nikov, A.G., Zhvanetskii, I.B., and Platonov, V.M., Analysis of Minimum-Reflux Distillation in a Two-Section Column, Teor. Osn. Khim. Tekhnol., 1980, vol. 14, no. 3, pp. 323–330.

    Google Scholar 

  18. Kolokol’nikov, A.G., Zhvanetskii, I.B., Platonov, V.M., and Slin’ko, M.G., Substantiation and Development of Underwood’s Method, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no. 5, pp. 1200–1203.

    Google Scholar 

  19. Kolokol’nikov, A.G., Zhvanetskii, I.B., Platonov, V.M., and Slin’ko, M.G., Independence of the Minimum Reflux Ratio in a Two-Section Column of the Feed Introduction Model, Dokl. Akad. Nauk SSSR, 1981, vol. 264, no. 3, pp. 656–660.

    Google Scholar 

  20. Kolokol’nikov, A.G., Meskhi, G.A., and Platonov, V.M., Mathematical Model of a Couterflow Mass-Transfer Section with an Infinite Number of Separation Stages, Teor. Osn. Khim. Tekhnol., 1986, vol. 20, no. 2, pp. 136–149.

    Google Scholar 

  21. Danilov, R.Yu., Petlyuk, F.B., and Serafimov, L.A., Minimum-Reflux Regime of Simple Distillation Columns, Teor. Osn. Khim. Tekhnol., 2007, vol. 41, no. 4, pp. 394–407 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 41, p. 371–383].

    Google Scholar 

  22. Sverchinskii, B.S. and Serafimov, L.A., Calculating the Minimum Reflux Ratio, Teor. Osn. Khim. Tekhnol.,1970, vol. 4, no. 5, pp. 619–626.

    CAS  Google Scholar 

  23. Levy, S.G., van Dongen, D.B., and Doherty, M.F., Design and Synthesis of Homogenous Azeotropic Distillation: 2. Minimum Reflux Calculation for Nonideal and Azeotropic Columns, Ind. Eng. Chem. Fundam., 1987, vol. 24, pp. 463–475.

    Article  Google Scholar 

  24. Julka, V. and Dohertv, M.F., Geometric Behavior and Minimum Flows for Nonideal Multicomponent Distillation, Chem. Eng. Sci., 1990, vol. 45, pp. 1801–1822.

    Article  CAS  Google Scholar 

  25. Holland, Ch.D., Multicomponent Distillation, Englewood Cliffs, N.J.: Prentice-Hall, 1963.

    Google Scholar 

  26. L’vov, S.V., Nekotorye voprosy rektifikatsii binarnykh i mnogokomponentnykh smesei (Topics in the Distillation of Binary and Multicomponent Mixtures), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Frolkova.

Additional information

Original Russian Text © A.K. Frolkova,L.A. Khakhin, 2009, published in Khimicheskaya Tekhnologiya, 2009, Vol. 10, No. 4, pp. 237–245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolkova, A.K., Khakhin, L.A. Determination of the number of degrees of freedom for chemical-engineering objects: Distillation column. Theor Found Chem Eng 44, 604–611 (2010). https://doi.org/10.1134/S0040579510040445

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579510040445

Keywords

Navigation