Skip to main content
Log in

Prediction for the detonation velocity of the nitrogen-rich energetic compounds based on quantum chemistry

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In order to predict the detonation velocity of high-nitrogen compounds, the following calculated descriptors, Q, ρ, and ΔE of 54 high-nitrogen compounds were calculated using DFT-B3LYP method with the 6-31G** basis set, which were then used to build the linear and nonlinear multivariable models by multiple linear regression (MLR) and least square support vector machine (LS-SVM) methods, respectively. It turned out that the two models, whose stabilities were confirmed using the leave-one-out validation, were able to describe about 95.5 and 96.2% of the variance of the experimental values, respectively. External validation was carried out with R 2ext and Q 2ext values of 0.921, 0.911, 0.971, and 0.955, respectively. Moreover, the results of the Y-randomization test revealed that there were no chance corrections among the data matrix. These results coupling theoretical calculations and QSPR methods can be complementary to experimental tests, providing guidance for the management of chemical explosive hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Rice, S. V. Pai, and J. Hare, Combust. Flame 118, 445 (1999).

    Article  CAS  Google Scholar 

  2. M. H. Huynh, M. A. Hiskey, T. J. Meyer, and M. Wetzler, Proc. Natl. Acad. Sci. USA 103, 5409 (2006).

    Article  CAS  Google Scholar 

  3. R. P. Singh, R. D. Verma, D. T. Meshri, and J. N. M. Shreeve, Angew. Chem. Int. Ed. 45, 3584 (2006).

    Article  CAS  Google Scholar 

  4. M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, and A. S. Rao, J. Hazard. Mater. 161, 589 (2009).

    Article  CAS  Google Scholar 

  5. United Nations Economic Commission of Europe (UNECE), Globally Harmonized System of Classification and Labeling of Chemicals (GHS), 3rd ed. (Geneva, New York, 2009).

    Google Scholar 

  6. United Nations Economic Commission of Europe (UNECE), Recommendations on the Transport of Dangerous Doods: Manual of Tests and Criteria, 5th ed. (Geneva, New York, 2011).

    Google Scholar 

  7. P. Politzer, J. S. Murray, M. E. Grice, and P. Sjoberg, in Chemistry of Energetic Materials, Ed. by G. A. Olah and D. R. Squire (Academic Press, San Diego, 1991), p. 77.

  8. M. J. Kamlet and J. E. Ablard, J. Chem. Phys. 48, 36 (1968).

    Article  CAS  Google Scholar 

  9. M. J. Kamlet and C. Dickinson, J. Chem. Phys. 48, 43 (1968).

    Article  CAS  Google Scholar 

  10. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys. 48, 23 (1968).

    Article  CAS  Google Scholar 

  11. L. Türker, J. Energ. Mater. 29, 7 (2011).

    Article  Google Scholar 

  12. L. R. Rothstein and R. Petersen, Propell. Explos. Pyrot. 4, 56 (1979).

    Article  CAS  Google Scholar 

  13. E. Papa, S. Kovarich, and P. Gramatica, QSAR Comb. Sci. 28, 790 (2009).

    Article  CAS  Google Scholar 

  14. M. Cocchi, P. G. de Benedetti, R. Seeber, L. Tassi, and A. Ulrici, J. Chem. Inf. Comput. Sci. 39, 1190 (1999).

    Article  CAS  Google Scholar 

  15. A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, Chem. Rev. 110, 5714 (2010).

    Article  CAS  Google Scholar 

  16. F. Gharagheizi, J. Hazard. Mater. 169, 217 (2009).

    Article  CAS  Google Scholar 

  17. G. Fayet, P. Rotureau, L. Joubert, and C. Adamo, Process Saf. Prog. 29, 359 (2010).

    Article  CAS  Google Scholar 

  18. E. Papa, S. Kovarich, and P. Gramatica, Mol. Inform. 30, 232 (2011).

    Article  CAS  Google Scholar 

  19. E. Papa and P. Gramatica, Green Chem. 12, 836 (2010).

    Article  CAS  Google Scholar 

  20. B. Bhhatarai, W. Teetz, T. Liu, T. Öberg, N. Jeliazkova, N. Kochev, O. Pukalov, I. V. Tetko, S. Kovarich, E. Papa, and P. Gramatica, Mol. Inf. 30, 189 (2011).

    Article  CAS  Google Scholar 

  21. N. I. Zhokhova, V. A. Palyulin, I. I. Baskin, A. N. Zefirov, and N. S. Zefirov, Russ. J. Phys. Chem. A 81, 9 (2007).

    Article  CAS  Google Scholar 

  22. C. X. Zong, H. S. Tang, M. He, Z. X. Ge, W. P. Lai, and H. Li, Comput. Appl. Chem. 26, 152 (2009).

    Google Scholar 

  23. H. Wu, Z. X. Ge, B. Z. Wang, and H. Li, Comput. Appl. Chem. 25, 129 (2008).

    CAS  Google Scholar 

  24. T. Wei, J. Z. Wu, W. H. Zhu, C. C. Zhang, and H. M. Xiao, J. Mol. Model. 18, 3467 (2012).

    Article  CAS  Google Scholar 

  25. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  26. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, London, 1989).

    Google Scholar 

  27. T. Wei, W. H. Zhu, J. Z. Zhang, and H. M. Xiao, J. Hazard. Mater. 179, 581 (2010).

    Article  CAS  Google Scholar 

  28. P. C. Chen, Y. C. Chieh, and S. C. Tzeng, J. Mol. Struct: THEOCHEM 634, 215 (2003).

    Article  CAS  Google Scholar 

  29. X. W. Zhang, W. H. Zhu, and H. M. Xiao, J. Phys. Chem. A 114, 603 (2010).

    Article  CAS  Google Scholar 

  30. T. Wei, W. H. Zhu, X. Z. Zhang, Y. F. Li, and H. M. Xiao, J. Phys. Chem. A 113, 9404 (2009).

    Article  CAS  Google Scholar 

  31. Z. X. Chen, J. M. Xiao, H. M. Xiao, and Y. N. Chiu, J. Phys. Chem. A 103, 8062 (1999).

    Article  CAS  Google Scholar 

  32. H. M. Xiao and Z. X. Chen, The Modern Theory for Tetrazole Chemistry (Science Press, Beijing, 2000).

    Google Scholar 

  33. X. J. Xu, H. M. Xiao, X. H. Ju, X. D. Gong, and W. H. Zhu, J. Phys. Chem. A 110, 5929 (2006).

    Article  CAS  Google Scholar 

  34. W. J. Hahre, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  35. F. Wang, X. J. Xu, H. M. Xiao, and J. Zhang, Acta. Chim. Sinica 61, 1939 (2003).

    CAS  Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Jr. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K.N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7 (Gaussian, Inc., Pittsburgh, PA, 1998).

    Google Scholar 

  37. SPSS for Windows, Rel. 10.0.0.1999 (SPSS Inc., Chicago, 1999).

  38. J. A. K. Suykens and J. Vandewalle, Neural Process. Lett. 9, 293 (1999).

    Article  Google Scholar 

  39. C. J. Lin and C. C. Chang, LIBSVM: A library for support vector machines (2001). http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqun Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., He, G. & Chen, H. Prediction for the detonation velocity of the nitrogen-rich energetic compounds based on quantum chemistry. Russ. J. Phys. Chem. 88, 2363–2369 (2014). https://doi.org/10.1134/S0036024414130032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414130032

Keywords

Navigation