Skip to main content
Log in

State of active components on the surface of the PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of carbon monoxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The state of the active constituents of the freshly prepared PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of the carbon monoxide by molecular oxygen was studied by X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). It was shown that copper in the form of a crystalline phase of Cu2Cl(OH)3 with the structure of the mineral paratacamite and palladium chloride in an amorphous state occurred on the surface of γ-Al2O3. According to XAS data, the local environment of palladium consisted of four chlorine atoms, which formed a flat square with an increased distance between palladium and one of the chlorine atoms. The evolution of the local environments of copper and palladium upon a transition from the initial salts to the impregnating solutions and chlorides on the surface of γ-Al2O3 was considered. The role of γ-Al2O3 in the formation of the Cu2Cl(OH)3 phase was discussed. It was found by the DRIFTS method that linear (2114 cm−1) and bridging (1990 and 1928 cm−1) forms of coordinated carbon monoxide were formed upon the adsorption of CO on the catalyst surface. The formation of CO2 upon the interaction of coordinated CO with atmospheric oxygen was detected. Active sites including copper and palladium were absent from the surface of the freshly prepared catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakitskaya, T.L., Ennan, A.A., and Paina, V.Ya., Katalizatory nizkotemperaturnogo okisleniya monooksida ugleroda (Low-temperature Carbon Monoxide Oxidation Catalysts), Moscow: TsINTIKhIMNEFTEMASh, 1991, p. 40.

    Google Scholar 

  2. Kuznetsova, L.I., Matveev, K.I., and Zhizhina, E.G., Kinet. Katal., 1985, vol. 25, no. 5, p. 1029.

    Google Scholar 

  3. Desai, M.N., Butt, J.B., and Dranoff, J.S., J. Catal., 1983, vol. 79, p. 95.

    Article  CAS  Google Scholar 

  4. Choi, K.I. and Vannice, M.A., J. Catal., 1991, vol. 127, p. 489.

    Article  CAS  Google Scholar 

  5. Golodov, V.A., Sokolsky, D.V., and Noskova, N.F., J. Mol. Catal., 1977, vol. 3, nos. 1–3, p. 51.

    CAS  Google Scholar 

  6. Lee, J.S. and Park, E.D., Top. Catal., 2002, vol. 18, nos. 1–2, p. 67.

    Article  Google Scholar 

  7. Golodov, V.A., Sheludyakov, Yu.L., Di, R.I., and Fokanov, V.K., Kinet. Katal., 1977, vol. 18, p. 234.

    CAS  Google Scholar 

  8. Spitsyn, V.I., Fedoseev, I.V., Ponomarev, A.A., and Elkin, A.I., Zh. Neorg. Khim., 1978, vol. 23, no. 2, p. 454.

    CAS  Google Scholar 

  9. Golodov, V.A., Kuksenko, E.L., and Taneeva, G.V., Kinet. Katal., 1982, vol. 23, no. 1, p. 248.

    CAS  Google Scholar 

  10. Golodov, V.A., Kuksenko, E.L., Taneeva, G.V., Alekseev, A.M., and Geminova, M.V., Kinet. Katal., 1984, vol. 25, no. 2, p. 330.

    Google Scholar 

  11. Kim, K.D., Nam, I.-S., Chung, J.S., Lee, J.S., Ryu, S.G., and Yang, Y.S., Appl. Catal., B, 1994, vol. 5, p. 103.

    Article  CAS  Google Scholar 

  12. Park, E.D. and Lee, J.S., J. Catal., 2000, vol. 193, p. 5.

    Article  CAS  Google Scholar 

  13. Kotareva, I.A., Oshanina, I.V., Kuz’micheva, G.M., Turkova, T.V., Khaidarova, E.R., Zanaveskina, S.M., Bruk, L.G., Kaliya, O.L., and Temkin, O.N., Vestn. MITKhT, 2007, vol. 2, no. 4, p. 72.

    Google Scholar 

  14. Titov, D.N., Karandina, O.A., Oshanina, I.V., Zubavichus, Ya.V., Veligzhanin, A.A., Bruk, L.G., and Temkin, O.N., Tezisy dokl. III Ross. konf. “Aktual’nye problemy neftekhimii” (Proc. III Russian Conf. on Topical Problems of Petroleum Chemistry), Zvenigorod, Moscow oblast, 2009.

    Google Scholar 

  15. Rakitskaya, T.L. and Paina, V.Ya., Kinet. Katal., 1992, vol. 33, nos. 5–6, p. 1121.

    CAS  Google Scholar 

  16. Hosokawa, T., Nomura, T., and Murahashi, S.-I., J. Organomet. Chem., 1998, vol. 551, p. 387.

    Article  CAS  Google Scholar 

  17. Lee, J.S., Choi, S.H., Kim, K.D., and Nomura, M., Appl. Catal., B, 1996, vol. 7, p. 199.

    Article  CAS  Google Scholar 

  18. Choi, S.H. and Lee, J.S., React. Kinet. Catal. Lett., 1996, vol. 57, no. 2, p. 227.

    Article  CAS  Google Scholar 

  19. Yamamoto, Y., Matsuzaki, T., Ohdan, K., and Okamoto, Y., J. Catal., 1996, vol. 161, p. 577.

    Article  CAS  Google Scholar 

  20. Koh, D.J., Song, J.H., Ham, S.-W., Nam, I.-S., Chang, R.-W., Park, E.D., Lee, J.S., and Kim, Y.G., Korean J. Chem. Eng., 1997, vol. 14, no. 6, p. 486.

    Article  CAS  Google Scholar 

  21. Park, E.D. and Lee, J.S., J. Catal., 1998, vol. 180, p. 123.

    Article  CAS  Google Scholar 

  22. Park, E.D. and Lee, J.S., Stud. Surf. Sci. Catal., 2000, vol. 130, no. 3, p. 2309.

    Article  Google Scholar 

  23. Shen, Y., Lu, G., Guo, Yu., Wang, Y., Guo, Ya., and Gong, X., Catal. Today, 2011, vol. 175, no. 1, p. 25.

    Article  Google Scholar 

  24. Zhir-Lebed’, L.N. and Golodov, V.A., Trudy IOKE (Institut organicheskogo kataliza i elektrokhimii im. D.V. Sokol’skogo) AN KazSSR, Gomogennyi Katal., 1973, vol. 4, p. 85.

    Google Scholar 

  25. Likholobov, V.A., Zudin, V.P., Eremenko, N.K., and Ermakov, Yu.I., Kinet. Katal., 1974, vol. 15, no. 6, p. 1613.

    CAS  Google Scholar 

  26. Zudin, V.N., Likholobov, V.A., and Ermakov, Yu.I., Kinet. Katal., 1977, vol. 18, no. 2, p. 524.

    CAS  Google Scholar 

  27. RF Patent 2267354, 2006.

  28. Hammersley, A.P., FIT2D V9.129: Reference Manual, V3.1, ESRF Internal Report ESRF98HA01T, 1998.

  29. Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, p. 537.

    Article  CAS  Google Scholar 

  30. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B: Condens. Matter, 1998, vol. 58, p. 7565.

    Article  CAS  Google Scholar 

  31. Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 603, p. 95.

    Article  CAS  Google Scholar 

  32. Kustov, L.M., Top. Catal., 1997, vol. 4, p. 131.

    Article  CAS  Google Scholar 

  33. Zhou, R.-S. and Snyder, R.L., Acta Crystallogr., Sect. B: Struct. Sci., 1991, vol. 47, p. 617.

    Article  Google Scholar 

  34. Tsybulya, S.V. and Kryukova, G.N., Phys. Rev. B: Condens. Matter, 2008, vol. 77, p. 024112.

    Article  Google Scholar 

  35. Fleet, M.E., Acta Crystallogr., Sect. B: Struct. Sci., 1975, vol. 31, p. 183.

    Article  Google Scholar 

  36. Lamberti, C., Bordiga, S., Bonino, F., Prestipino, C., Berlier, G., Capello, L., and D’Acapito, F., Llabrés i Xamena, F.X., and Zecchina, A., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 4502.

    Article  CAS  Google Scholar 

  37. Dell’Amico, D.B., Calderazzo, F., Marchetti, F., and Ramello, S., Angew. Chem. Int. Ed., 1996, vol. 35, p. 1331.

    Article  Google Scholar 

  38. Brownstein, S., Han, N.F., Gabe, E.J., and le Page, Y., Z. Kristallogr., 1989, vol. 189, p. 13.

    Article  CAS  Google Scholar 

  39. Ohtaki, H. and Radnai, T., Chem. Rev., 1993, vol. 93, p. 1157.

    Article  CAS  Google Scholar 

  40. Beagley, B., Eriksson, A., Lindgren, J., Persson, I., Pettersson, L.G.M., Sandstrom, M., Wahlgren, U., and White, E.W., J. Phys.: Condens. Mater, 1989, vol. 1, p. 2395.

    Article  CAS  Google Scholar 

  41. Vargaftik, M.N., Stromnova, T.A., and Moiseev, I.I., Zh. Neorg. Khim., 1980, vol. 25, no. 2, p. 236.

    CAS  Google Scholar 

  42. Temkin, O.N. and Bruk, L.G., Usp. Khim., 1983, vol. 52, no. 2, p. 206.

    CAS  Google Scholar 

  43. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (IR Spectroscopy Applied to Oxide Surface Chemistry), Novosibirsk: Nauka, 1984.

    Google Scholar 

  44. Goggin, P.L., Goodfellow, R.J., Herbert, I.R., and Orpen, A.J., J. Chem. Soc., Chem. Commun., 1981, p. 1077.

  45. Kotareva, I.A., Oshanina, I.V., Odintsov, K.Yu., Bruk, L.G., and Temkin, O.N., Kinet. Catal., 2008, vol. 49, no. 1, p. 18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Titov.

Additional information

Original Russian Text © D.N. Titov, A.V. Ustyugov, O.P. Tkachenko, L.M. Kustov, Ya.V. Zubavichus, A. A. Veligzhanin, N.V. Sadovskaya, I. V. Oshanina, L.G. Bruk, O.N. Temkin, 2012, published in Kinetika i Kataliz, 2012, Vol. 53, No. 2, pp. 272–284.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, D.N., Ustyugov, A.V., Tkachenko, O.P. et al. State of active components on the surface of the PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of carbon monoxide. Kinet Catal 53, 262–273 (2012). https://doi.org/10.1134/S0023158412020140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158412020140

Keywords

Navigation