Skip to main content
Log in

Spin injection from topological insulator tunnel-coupled to metallic leads

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We study theoretically helical edge states of 2D and 3D topological insulators (TI) tunnel-coupled to metal leads and show that their transport properties are strongly affected by contacts as the latter play a role of a heat bath and induce damping and relaxation of electrons in the helical states of TI. A simple structure that produces a pure spin current in the external circuit is proposed. The current and spin current delivered to the external circuit depend on relation between characteristic lengths: damping length due to tunneling, contact length and, in case of 3D TI, mean free path and spin relaxation length caused by momentum scattering. If the damping length due to tunneling is the smallest one, then the electric and spin currents are proportional to the conductance quantum in 2D TI, and to the conductance quantum multiplied by the ratio of the contact width to the Fermi wavelength in 3D TI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pesin and A. H. MacDonald, Nature Mater. 11, 409 (2012).

    Article  ADS  Google Scholar 

  2. S. Modak, K. Sengupta, and D. Sen, Phys. Rev. B 86, 205114 (2012).

    Article  ADS  Google Scholar 

  3. C. Brüne, A. Roth, H. Buhmann, et al., Nature Phys. 8, 485 (2012).

    Article  ADS  Google Scholar 

  4. A. A. Sukhanov and V. A. Sablikov, J. Phys.: Condens. Matter 24, 405301 (2012).

    Article  Google Scholar 

  5. T. Pareek, Phys. Rev Lett. 92, 76601 (2004).

    Article  ADS  Google Scholar 

  6. F. Dolcini, Phys. Rev. B 83, 165304 (2011).

    Article  ADS  Google Scholar 

  7. M. König, H. Buhmann, L. W. Molenkamp, et al., J. Phys. Soc. Jpn. 77, 031007 (2008).

    Article  ADS  Google Scholar 

  8. H. Zhang, C.-X. Lium, X.-L. Qi, et al., Nature Phys. 5, 438 (2009).

    Article  ADS  Google Scholar 

  9. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  10. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).

    MathSciNet  Google Scholar 

  11. N. B. Kopnin and A. S. Melnikov, Phys. Rev. B 84, 064524 (2011).

    Article  ADS  Google Scholar 

  12. T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013).

    Article  ADS  Google Scholar 

  13. P. G. Silvestrov, P. W. Brouwer, and E. G. Mishchenko, Phys. Rev. B 86, 075302 (2012).

    Article  ADS  Google Scholar 

  14. P. Schwab, R. Raimondi, and C. Gorini, Europhys. Lett. 93, 67004 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Aseev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aseev, P.P., Artemenko, S.N. Spin injection from topological insulator tunnel-coupled to metallic leads. Jetp Lett. 98, 285–288 (2013). https://doi.org/10.1134/S0021364013180045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013180045

Keywords

Navigation