Skip to main content
Log in

Nonlinear optical conversion in synthetic opal

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents an experimental study of third optical harmonic generation processes in synthetic opal. Excitation was provided by ultrashort (∼10−13 s) laser pulses (λ = 1026 and 513 nm) with a high repetition rate (105 Hz), high peak power (up to 1 GW), and low pulse energy (10−5 J). The third optical harmonic intensity was shown to depend significantly on the diameter of the silica spheres, which determines the spectral position of the band gaps in the opal photonic crystal. The highest efficiency of the nonlinear optical conversion of excitation light to the third optical harmonic was observed when the excitation or optical harmonic wavelength was close to the spectral position of the band gap of the photonic crystal. This behavior can be accounted for by the presence of surface photon (Tamm) states of the optical field in opal photonic crystals in the spectral region corresponding to the band gap of the photonic crystal. The presence of photon Tamm states leads to the formation of high spectral intensity regions localized near the surface of the photonic crystal. This causes a considerable increase in nonlinear optical conversion efficiency, in particular, in the case of the third optical harmonic generation in the centrosymmetric structure of opal lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bykov, V.P., Spontaneous emission in a periodic structure, Zh. Eksp. Teor. Fiz., 1972, vol. 62, no. 2, pp. 505–513.

    CAS  Google Scholar 

  2. Gorelik, V.S., Optical properties of opal photonic crystals, Kvantovaya Elektron. (Moscow), 2007, vol. 37, no. 5, pp. 409–432.

    Article  CAS  Google Scholar 

  3. Ho, K.M., Chan, C.T., and Soukoulis, C.M., Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 1990, vol. 65, pp. 3152–3155.

    Article  CAS  Google Scholar 

  4. Yablonovitch, E. and Gmitter, T.J., Photonic band structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., 1991, vol. 67, pp. 2295–2298.

    Article  CAS  Google Scholar 

  5. Hornreich, R.M. and Shtrikman, S., Photonic band gaps in body-centered-cubic structures, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, pp. 10 914–10 917.

    Article  CAS  Google Scholar 

  6. Sajeev, J., Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, vol. 58, pp. 2486–2489.

    Article  Google Scholar 

  7. Fan, S., Johnson, S.G., Joannopoulos, J.D., Manolatou, C., and Haus, H.A., Waveguide branches in photonic crystals, J. Opt. Soc. Am. B.: Opt. Phys., 2001, vol. 18, pp. 162–165.

    Article  CAS  Google Scholar 

  8. Chow, E., Lin, S.Y., Wendt, J.R., Johnson, S.G., and Joannopoulos, J.D., Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths, Opt. Lett., 2001, vol. 26, pp. 286–288.

    Article  CAS  Google Scholar 

  9. Knight, J.C., Birks, T.A., Russell, P.St.J., and Atkin, D.M., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, vol. 21, no. 19, pp. 1547–1549.

    Article  CAS  Google Scholar 

  10. Knight, J.C., Broeng, J., Birks, T.A., and Russell, P.St.J., Photonic band gap guidance in optical fibers, Science, 1998, vol. 282, no. 5393, pp. 1476–1478.

    Article  CAS  Google Scholar 

  11. Benabid, F., Couny, F., Knight, J.C., Birks, T.A., and Russell, P.St.J., Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers, Nature, 2005, vol. 434, no. 7032, pp. 488–491.

    Article  CAS  Google Scholar 

  12. Boyko, V., Dovbeshko, G., Fesenko, O., Gorelik, V., Moiseyenko, V., Romanyuk, V., Shvets, T., and Vodolazkyy, P., New optical properties of synthetic opals infiltrated by DNA, Mol. Cryst. Liq. Cryst., 2011, vol. 535, pp. 30–41.

    Article  CAS  Google Scholar 

  13. Artamonov, A.N., Burkov, V.I., Vitukhnovskii, A.G., Gorelik, V.S., Ivicheva, S.N., Sverbil’, P.P., and Skorikov, V.M., Photoluminescence of nanocomposites based on opal matrices of silica sols with rare-earth elements, Kratk. Soobshch. Fiz., 2005, no. 10, pp. 20–29.

    Google Scholar 

  14. Avakyants, L.P., Gorelik, V.S., Zlobina, L.I., Mel’nik, N.N., Sverbil’, P.P., Fadyushin, A.B., and Chervyakov, A.V., Raman scattering study of NaNO2-infiltrated opal photonic crystals, Neorg. Mater., 2006, vol. 42, no. 6, pp. 635–640.

    Article  CAS  Google Scholar 

  15. Gorelik, V.S. and Filatov, V.V., Dispersion characteristics of waterand gold-infiltrated opal photonic crystals, Inorg. Mater., 2012, vol. 48, no. 4, pp. 361–367.

    Article  CAS  Google Scholar 

  16. Soljacic, M. and Joannopoulos, J.D., Enhancement of nonlinear effects using photonic crystals, Nat. Mater., 2004, vol. 3, pp. 211–219.

    Article  CAS  Google Scholar 

  17. Berger, V., Nonlinear photonic crystals, Phys. Rev. Lett., 1998, vol. 81, pp. 4136–4139.

    Article  CAS  Google Scholar 

  18. Balakin, A.V., Bushuev, V.A., Koroteev, N.I., Mantsyzov, B.I., Ozheredov, I.A., Shkurinov, A.P., Boucher, D., and Masselin, P., Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light, Opt. Lett., 1999, vol. 24, no. 12, pp. 793–795.

    Article  CAS  Google Scholar 

  19. Fedyanina, A.A., Aktsipetrov, O.A., Kurdyukov, D.A., Golubev, V.G., and Inoue, M., Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals, Appl. Phys. Lett., 2005, vol. 87, paper 151 111.

  20. Balakin, A.V., Bushuev, V.A., Mantsyzov, B.I., Ozheredov, I.A., Petrov, E.V., Shkurinov, A.P., Masselin, P., and Mouret, G., Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 63, no. 4, paper 466 091.

    Google Scholar 

  21. Andreev, A.V., Balakin, A.V., Kozlov, A.B., Ozheredov, I.A., Prudnikov, I.R., Shkurinov, A.P., Masselin, P., and Mouret, G., Four-wave mixing in one-dimensional photonic crystals: inhomogeneouswave excitation, J. Opt. Soc. Am. B: Opt. Phys., 2002, vol. 19, no. 8, pp. 1865–1872.

    Article  CAS  Google Scholar 

  22. Andreev, A.V., Balakin, A.V., Kozlov, A.B., Ozheredov, I.A., Prudnikov, I.R., Shkurinov, A.P., Masselin, P., and Mouret, G., Nonlinear process in photonic crystals under the noncollinear interaction, J. Opt. Soc. Am. B: Opt. Phys., 2002, vol. 19, no. 9, pp. 2083–2093.

    Article  CAS  Google Scholar 

  23. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 1987, vol. 58, pp. 2059–2062.

    Article  CAS  Google Scholar 

  24. Bhat, N.A.R. and Sipe, J.E., Optical pulse propagation in nonlinear photonic crystals, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 64, paper 056 604.

  25. Rivoire, K., Buckley, S., Song, Y., Lee, M.L., and Vučković, J., Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 85, paper 045 319.

    Article  Google Scholar 

  26. Vinogradov, A.P., Dorofeenko, A.V., Merzlikin, A.M., and Lisyanskii, A.A., Surface states in photonic crystals, Usp. Fiz. Nauk, 2010, vol. 180, no. 3, pp. 249–263.

    Article  Google Scholar 

  27. Kłos, J., Conditions of Tamm and Shockley state existence in chains of resonant cavities in a photonic crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 165 125.

    Article  Google Scholar 

  28. Malkova, N. and Ning, C.Z., Shockley and Tamm surface states in photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, paper 113 113.

    Article  Google Scholar 

  29. Malkova, N. and Ning, C.Z., Interplay between Tamm-like and Shockley-like surface states in photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 045 305.

    Article  Google Scholar 

  30. Zaytsev, K.I., Gorelik, V.S., Khorokhorov, A.M., and Yurchenko, S.O., FDTD simulation of the electromagnetic field surface states in 2D photonic crystals, J. Phys.: Conf. Ser., 2014, vol. 486, paper 012 003.

  31. Zaytsev, K.I., Katyba, G.M., Yakovlev, E.V., Gorelik, V.S., and Yurchenko, S.O., Band-gap nonlinear optical generation: the structure of internal optical field and the structural light focusing, J. Appl. Phys., 2014, vol. 115, paper 213 505.

  32. Katyba, G.M. and Gorelik, V.S., Parametric emission generation in cubic noncentrosymmetrical crystals, J. Phys.: Conf. Ser., 2014, vol. 486, nos. 1–4, paper 012 020.

    Google Scholar 

  33. Gorelik, B.C. and Katyba, G.M., Terahertz generation in cubic noncentrosymmetric crystals, Kratk Soobshch. Fiz., 2014, no. 5, pp. 17–28.

    Google Scholar 

  34. Gorelik, B.C. and Filatov, V.V., Reflection spectra of synthetic opal at liquid-nitrogen temperature, Inorg. Mater., 2014, vol. 50, no. 10, pp. 1007–1011.

    Article  CAS  Google Scholar 

  35. Besedina, K.N., Investigation of opal lattice formation processes, Nanoinzheneriya, 2012, no. 3, pp. 7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © V.S. Gorelik, K.I. Zaytsev, V.N. Moiseenko, S.O. Yurchenko, I.N. Aliev, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 5, pp. 473–478.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Zaytsev, K.I., Moiseenko, V.N. et al. Nonlinear optical conversion in synthetic opal. Inorg Mater 51, 419–424 (2015). https://doi.org/10.1134/S0020168515050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515050027

Keywords

Navigation