Skip to main content
Log in

Interaction of tryptophan and its derivatives with oxygen- and nitrogen-centered radicals

  • Radiation Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The interaction of tryptophan and its derivatives with the nitrogen-centered 2,2-diphenyl-1-picrylhydrazyl radical and oxygen-centered radicals formed during the radiolysis of oxygen-saturated ethanol and its aqueous solutions has been studied. It has been found that unlike pyrrole, indole, or melatonin, tryptophan, 5-hydroxytryptophan, serotonin, harman, harmine, and harmaline are capable of reducing oxygen-centered radicals by electron transfer from the lone pairs of nitrogen atoms. It has been shown that serotonin and 5-hydroxytryptophan reduce the 2,2-diphenyl-1-picrylhydrazyl radical via the transfer of hydrogen atoms from the hydroxyl groups of the molecules. In this case, pyrrole, indole, tryptophan, melatonin, harman, harmine, and harmaline, which do not contain phenolic hydroxyl groups in their structures, do not interact with the 2,2-diphenyl-1-picrylhydrazyl radical. The final molecular products of the reaction of serotonin and 5-hydroxytryptophan with 2,2-diphenyl-1-picrylhydrazyl radicals have been identified by chromatography-mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell, B. and Gutteridge, J.M.C., Free radicals in Biology and Medicine, Oxford: Oxford University Press, 1999.

    Google Scholar 

  2. Von Sonntag, C., The Chemical Basis of Radiation Biology, London: Taylor and Francis, 1987.

    Google Scholar 

  3. Rice-Evans, A. and Diplock, A.T., Free Radical Biol. Med., 1993, vol. 15, no. 1, p. 77.

    Article  CAS  Google Scholar 

  4. Firuzi, O., Miri, R., Tavakkoli, M., and Saso, L., Curr. Med. Chem., 2011, vol. 18, no. 25, p. D. 3871.

    Article  Google Scholar 

  5. Kudryashov, Yu.B., Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) (Radiation iophysics (Ionizing Radiations), Mazurik, V.K. and Lomanov, M.F., Eds., Moscow: FIZMATLIT, 2004.

  6. Von Sonntag, C., Free-Radical-Induced DNA Damage and Its Repair, Berlin: Springer, 2006.

    Book  Google Scholar 

  7. Shadyro, O.I., Sosnovskaya, A.A., and Vrublevskaya, O.N., Int. J. Radiat. Biol., 2003, vol. 79, no. 4, p. 269.

    Article  CAS  Google Scholar 

  8. Shadyro, O.I., Yurkova, I.L., Kisel, M.A., Brede, O., and Arnhold, J., Int. J. Radiat. Biol., 2004, vol. 80, no. 3, p. 239.

    Article  CAS  Google Scholar 

  9. Yurkova, I., Kisel, M., Arnhold, J., and Shadyro, O., Chem. Phys. Lipids, 2005, vol. 134, no. 1, p. 41.

    Article  CAS  Google Scholar 

  10. Edimecheva, I.P., Kisel, M.A., Shadyro, O.I., Kazem, K., Murase, H., and Kagiya, T., J. Radiat. Res., 2005, vol. 46, no. 3, p. 319.

    Article  CAS  Google Scholar 

  11. Brinkevich, S.D., Sverdlov, R.L., and Shadyro, O.I., High Energy Chem., 2013, vol. 47, no. 1, p. 12.

    Article  CAS  Google Scholar 

  12. Sverdlov, R.L., Brinkevich, S.D., and Shadyro, O.I., Radiat. Phys. Chem., 2014, vol. 98, p. 77.

    Article  CAS  Google Scholar 

  13. Jore, D., Champion, B., Kaouadji, N., Jay-Gerin, J.-P., and Ferradini, C., Radiat. Phys. Chem., 1988, vol. 32, no. 3, p. 443.

    CAS  Google Scholar 

  14. Wuguo, Deng., Yongke, He., Xingwang, Fang., and Jilan, Wu., Radiat. Phys. Chem., 1998, vol. 53, p. 629.

    Article  Google Scholar 

  15. Shadyro, O.I., Sosnovskaya, A.A., Edimecheva, I.P., Ostrovskaya, N.I., and Kazem, K.M., High Energy Chem., 2008, vol. 42, no. 2, p. 83.

    Article  CAS  Google Scholar 

  16. Samovich, S.N., Brinkevich, S.D., Edimecheva, I.P., and Shadyro, O.I., Radiat. Phys. Chem., 2014, vol. 100, p. 13.

    Article  CAS  Google Scholar 

  17. Bondet, V., Brand-Williams, W., and Berset, C., LWT-Food Sci. Technol., 1997, vol. 30, no. 6, p. 609.

    Article  CAS  Google Scholar 

  18. Fujinami, Y., Tai, A., and Yamamoto, I., Chem. Pharm. Bull., 2001, vol. 49, no. 5, p. 642.

    Article  CAS  Google Scholar 

  19. Goupy, P., Dufour, C., Loonis, M., and Dangles, O., J. Agric. Food Chem., 2003, vol. 51, no. 3, p. 615.

    Article  CAS  Google Scholar 

  20. Soares, D.G., Andreazza, A.C., and Salvador, M., J. Agric. Food Chem., 2003, vol. 51, no. 4, p. 1077.

    Article  CAS  Google Scholar 

  21. Bairamov, V.M., Osnovy khimicheskoi kinetiki i kataliza (Fundamentals of Chemical Kinetics and Catalysis), Moscow: Akademiya, 2003.

    Google Scholar 

  22. Freeman, G.R., Kinetics of Nonhomogeneous Processes: A Practical Introduction for Chemists, Biologists, Physicists, and Material Scientists, Freeman, G.R., Ed., New York: Wiley, 1988, p. 73.

  23. Bothe, E., Schuchmann, M.N., Schulte-Frohlinde, D., and von Sonntag, C., Z. Naturforsch, 1983, vol. 38b, p. 212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Shadyro.

Additional information

Original Russian Text © R.L. Sverdlov, A.V. Khrishchanovich, S.D. Brinkevich, O.I. Shadyro, 2015, published in Khimiya Vysokikh Energii, 2015, Vol. 49, No. 2, pp. 89–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sverdlov, R.L., Khrishchanovich, A.V., Brinkevich, S.D. et al. Interaction of tryptophan and its derivatives with oxygen- and nitrogen-centered radicals. High Energy Chem 49, 83–91 (2015). https://doi.org/10.1134/S0018143915020101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915020101

Keywords

Navigation