Skip to main content
Log in

On the physical nature of auroral breakup precursors as observed in an event on 5 March 2008

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Using coordinated THEMIS spacecraft and all-sky imager observations, we studied an auroral breakup event on 5 March 2008, where auroral activities for 30–40 min before T 0 were all of the East-West (E-W) orientation, and found that their dynamics infers a wave process. For the event under study, there were conjunctive measurements (with 3 s time resolution) of plasma, energetic particles, magnetic B and electric E fields by four THEMIS probes, positioned approximately along the tail. The THEMIS probe measurements, bandpass-filtered in the range 12–120 s, revealed the low-frequency wave activity in the considered time interval. The out-of-phase relation between variations in the magnetic and plasma pressures, along with a positive correlation between −∂Bx/∂t and z GSM component of ion velocity (flapping), indicated the ballooning mode. Considering the similarity of the wave-like characteristics derived from ground-based auroral and THEMIS spacecraft observations, we argue that the E-W auroral features preceding onset may be related to ballooning waves propagating in the plasma sheet, their wavefronts inclined at relatively small angles to the azimuthal direction. The implications for mechanisms of substorm triggering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I., The development of auroral substorm, Planet. Space Sci., 1964, vol. 12, pp. 273–282.

    Article  Google Scholar 

  • Akasofu, S.-I., Lui, A.T.Y., and Meng, C.-I., Importance of auroral features in the search of substorm onset processes, J. Geophys. Res., 2010, vol. 115, p. A08218. doi:10.1029/2009JA014960

    Google Scholar 

  • Angelopoulos, V., Baumjohann, W., Kennel, C.F., Coroniti, F.V., Kivelson, M.G., Pellat, R., Walker, R.J., Luehr, H., and Paschmann, G., Bursty bulk flows in the inner plasma sheet, J. Geophys. Res., 1992, vol. 97, pp. 4027–4039.

    Article  Google Scholar 

  • Baumjohann, W., Paschmann, G., and Cattell, C.A., Average plasma properties in the central plasma sheet, J. Geophys. Res., 1989, vol. 94, pp. 6597–6606. doi: 10.1029/JA094iA06p06597

    Article  Google Scholar 

  • Erickson, G.M. and Wolf, R.A., Is the steady convection possible in the Earth’s magnetotail? Geophys. Res. Lett., 1980, vol. 7, pp. 897–900.

    Article  Google Scholar 

  • Golovchanskaya, I.V. and Maltsev, Y.P., On the identification of the plasma sheet flapping waves observed by Cluster, Geophys. Res. Lett., 2005, p. 32.L02102. doi: 10.1029/2004GL021552

    Google Scholar 

  • Henderson, M.G., Kepko, L., Spence, H.E, Connors, M., Sigwarth, J.B., Frank, L.A., Singer, H.J., and Yumoto, K., The evolution of north-south aligned auroral forms into auroral torch structures: The generation of omega bounds and Ps6 pulsation via flow bursts, Proc. the Sixth International Conference on Substorm, Winglee, R.M., Ed., Seattle: Univ. of Washington, 2002, pp. 169–174.

    Google Scholar 

  • Kornilova, T.A., Kornilov, I.A., and Kornilov, O.I., Auroral intensification structure and dynamics in the double oval: substorm of December 26, 2000, Geomagnetizm i Aeronomiya, 2006, vol. 46, no. 4, pp. 477–484.

    Google Scholar 

  • Kornilova, T.A., Kornilov, I.A., and Kornilov, O.I., Fine structure of breakup development inferred from satellite and ground-based observations, Ann. Geophys., 2008, vol. 26, pp. 1141–1148. doi:10.5194/angeo-26-1141-2008

    Article  Google Scholar 

  • Kornilova, T.A. and Kornilov, I.A., Counterstreaming auroral structures during substorm expansion, J. Geophys. Res., 2012, vol. 117, p. A05328. doi:10.1029/2011JA017309

    Google Scholar 

  • Kozelova, T.V. and Kozelov, B.V., Substorm-associated explosive magnetic field stretching near the earthward edge of the plasma sheet, J. Geophys. Res., 2013, vol. 118, pp. 3323–3335. doi: 10.1002/jgra.50344

    Article  Google Scholar 

  • Liu, W., Physics of the explosive growth phase: Ballooning instability revisited, J. Geophys. Res., 1997, vol. 102, pp. 4927–4931.

    Article  Google Scholar 

  • Mazur, N.G., Fedorov, E.N, and Pilipenko, V.A. Ballooning modes and their stability in a near-Earth plasma, Earth Planet. Space, 2013, vol. 65, pp. 463–471.

    Article  Google Scholar 

  • Mende, S.B., Frey, H.U., Angelopoulos, V., and Nishimura, Y., Substorm triggering by poleward boundary intensification and related equatorward propagation, J. Geophys. Res., 2011, vol. 116, p. A00I31. doi:10.1029/2010JA015733

    Google Scholar 

  • Miura, A., Ohtani, S., and Tamao, T., Ballooning instability and structure of diamagnetic hydromagnetic waves in a model magnetosphere, J. Geophys. Res., 1989, vol. 94, pp. 15 231–15 242.

    Article  Google Scholar 

  • Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., and Mende, S., Substorm triggering by new plasma intrusion: THEMIS all-sky imager observations, J. Geophys. Res., 2010, vol. 115, p. A07222. doi:10.1029/2009JA015166

    Google Scholar 

  • Oguti, T., Hydrogen emission and electron aurora at the onset of the auroral breakup, J. Geophys. Res., 1973, vol. 78, pp. 7543–7547, p. doi:10.1029/JA078i031p07543

    Article  Google Scholar 

  • Ohtani, S. and Tamao, T., Does the ballooning instability trigger substorms in the near-Earth magnetotail?, J. Geophys. Res., 1993, vol. 98, pp. 19 369–19 379.

    Article  Google Scholar 

  • Panov, E.V., Nakamura, R., Baumjohann, W., Kubyshkina, M.V., Artemyev, A.V., Sergeev, V.A., Petrukovich, A.A., Angelopoulos, V., Glassmeier, K.-H., McFadden, J.P., and Larson, D., Kinetic ballooning instability in a bent plasma sheet, J. Geophys. Res., 2012, vol. 117, p. A06228. doi:10.1029/2011JA017496

    Google Scholar 

  • Pritchett, P.L. and Coroniti, F.V. A kinetic ballooning/interchange instability in the magnetotail, J. Geophys. Res., 2010, vol. 115, p. A06301. doi:10.1029/2009JA014752

    Google Scholar 

  • Pritchett, P.L. and Coroniti, F.V., Plasma sheet disruption by interchange-generated flow intrusions, Geophys. Res. Lett., 2011, vol. 38, p. L10102. doi:10.1029/2011GL047527

    Article  Google Scholar 

  • Rostoker, G., Lui, A.T.Y, Anger, C.D., and Murphree, J.S., North-south structures in the midnight sector auroras as viewed by the Viking imager, Geophys. Res. Lett., 1987, vol. 14, pp. 407–410. doi:10.1029/GL014i004p00407

    Article  Google Scholar 

  • Roux, A., Perraut, S., Robert, P., Morane, A., Pedersen, A., Korth, A., Kremser, G., Aparicio, B., Rodgers, D., and Pellinen, R., Plasma sheet instability related to the westward traveling surge, J. Geophys. Res., 1991, vol. 96, pp. 17697–17714.

    Article  Google Scholar 

  • Saito, M.H., Miyashita, Y., Fujimoto, M., Shinohara, I., Saito, Y., Liou, K., and Mukai, T., Ballooning mode waves prior to substorm-associated dipolarizations: Geotail observations, J. Geophys. Res., 2008 vol. 35, p. 7103. doi:10.1029/2008GL033269

    Google Scholar 

  • Uritsky, V.M., Liang, J., Donovan, E., Spanswick, E., Knudsen, D., Liu, W., Bonnell, J., and Glassmeier, K.H., Longitudinally propagating arc wave in the pre-onset optical aurora, Geophys. Res. Lett., 2009, 36, L21103, doi:10.1029/2009GL040777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kornilov.

Additional information

Original Russian Text © I.A. Kornilov, T.A. Kornilova, I.V. Golovchanskaya, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 2, pp. 222–230.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilov, I.A., Kornilova, T.A. & Golovchanskaya, I.V. On the physical nature of auroral breakup precursors as observed in an event on 5 March 2008. Geomagn. Aeron. 55, 210–218 (2015). https://doi.org/10.1134/S0016793215020103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215020103

Keywords

Navigation