Skip to main content
Log in

Evaluating the diamondiferous potential of unaltered kimberlites by the population models of their composition

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

430 chemical analyses of rocks and their diamondiferous potential are used to identify correlations between the diamondiferous potential of rocks and their petrochemical parameters. Samples for this research were collected from selected intervals of core materials, which were also examined for diamond content (a few samples from each interval), from the Nyurbinskaya, Botuobinskaya, Internatsional’naya, Mir, Aikhal, Yubileinaya, Satykanskaya, Udachnaya-West, and Udachnaya-East pipes. Typochemical indications of diamondiferous potential are TiO2 and K2O concentrations and the CaO/MgO ratio. System models developed for diamondiferous kimberlites allowed distinguishing two trends of their compositional variability. One of the trends is defined by the negatively correlated TiO2 and K2O concentrations of the rocks. This trend is discrete and can be statistically justifiably subdivided into seven segments, each of which represents a population of compositions produced under similar physicochemical conditions. Experimental data confirm that this trend can be closely related to the diamondiferous potential. Diamond richest kimberlites are practically free of TiO2, whereas diamond poorest ones contain as much as 3% of this oxide. The former and the latter rocks were produced at the greatest and shallowest depths, respectively. The other trend is exhibited in all populations and subdivides them into discrete groups (varieties of the populations) with systematically decreasing CaO/MgO ratio. This parameter is nonlinearly correlated with the diamondiferous potential, and its increase corresponds to a systematic increase in the melting temperature of the source material. Certain kimberlite populations contain anomalously high K2O concentrations, perhaps, because of mantle metasomatism or the presence of fragments of oceanic crustal material in the magma generation region. In these instances, numerous diamonds could crystallize in the parental melts under high pressures (>100 kbar). The paper presents statistical analysis of pair regressions of the contents of indicative oxides and diamondiferous potential and a graphical multiple-link model for correlations between concentrations of major oxides and diamondiferous potential. Tests of the predictions of diamondiferous potential on the basis of chemical parameters confirm that these predictions are accurate in 85–90% of the instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Taylor, R. A. Keller, G. A. Snyder, W. Wang, W. D. Carlson, E. H. Hauri, MacCandless T., Kim K-R., Sobolev N.V., and Bezborodov S.M. “Diamonds and Their Mineral Inclusions, and What They Tell Us: A Detailed “Pull-Apart” of a Diamondiferous Eclogite,” Int. Geol. Rev. 41, 959–983 (2000).

    Article  Google Scholar 

  2. A. F. Belousov and A. P. Krivenko, Magma Genesis of Volcanic Associations (Nauka. Sib. Otd., Novosibirsk, 1983) [in Russian].

    Google Scholar 

  3. V. B. Vasilenko, N. N. Zinchuk, and L. G. Kuznetsova, Petrochemical Models of the Yakutian Diamond Deposits (Nauka, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  4. System Studies: Methodological Problems, Ed. by M.D. Gvishiani (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  5. D. M. Orlov, G. N. Lipner, M. P. Orlova, and L. V. Smelova, Petrochemistry of Magmatic Associations: A Reference Book (Nedra, Leningrad, 1991) [in Russian].

    Google Scholar 

  6. V. B. Vasilenko, N. N. Zinchuk, L. G. Kuznetsova, V. A. Minin, L. D. Kholodova, “Average Composition of Kimberlite Bodies in the Vilyui Subprovince, Yakutia, as the Basis for Classification of Kimberlites with Certain Associations,” Vestn. Voronezh. Gos. Univ., Ser. Geol., No. 2, 126–140 (2006).

  7. Yu. A. Kuznetsov, Main Types of Magmatic Associations (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  8. A. A. Kukharenko, “Origin of Carbonatites,” in Proceedings of 2nd Conference on Wall-Rock Metasomatites (LGU, Leningrad, 1966), pp. 34–47 [in Russian].

    Google Scholar 

  9. V. B. Vasilenko and N. N. Zinchuk, “Mantle Plumes” as Determining Factor of Vertical Migration of Magma Generation Zones, Fixed the Bulk Kimberlite Composition,” in Plumes and Problems of Deep Sources of Alkaline Magmatism. Proceedings of the International Conference, Khabarovsk, Russia, 2003 (State Techn. Univ., Irkutsk, 2003), pp. 96–114.

    Google Scholar 

  10. V. B. Vasilenko, A. V. Tolstov, L. G. Kuznetsova, and V. A. Minin, “Petrochemical Evaluation of the Diamond Potentials of Yakutian Kimberlite Fields,” Geochem. Int. 48(4), 346–354 (2010).

    Article  Google Scholar 

  11. V. B. Vasilenko, N. N. Zinchuk, V. O. Krasavchikov, L. G. Kuznetsova, V. V. Khlestov, and N. I. Volkova, “Diamond Potential Estimation Based on Kimberlite Major Element Chemistry,” J. Geochem. Explor. 76, 93–112 (2002).

    Article  Google Scholar 

  12. E. A. Shamshina, Weathering Zones of the Kimberlite Rocks of Yakutia (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  13. V. B. Vasilenko, A. V. Tolstov, V. A. Minin, and L. G. Kuznetsova, “Normative Quartz as an Indicator of the Mass Transfer Intensity during the Postmagmatic Alteration of the Botuobinskaya Pipe Kimberlites (Yakutia),” Russ. Geol. Geophys. 49(12), 894–907 (2008).

    Article  Google Scholar 

  14. V. B. Vasilenko, L. G. Kuznetsova, V. A. Minin, and A. V. Tolstov, “Behavior of Major and Rare-Earth Elements during the Postmagmatic Alteration of Kimberlites,” Russ. Geol. Geophys. 53(1), 62–76 (2012).

    Article  Google Scholar 

  15. N. N. Zinchuk, V. B. Vasilenko, L. G. Kuznetsova, and O. E. Koval’chuk, “Structure of Secondary Quartz from Kimberlites as an Indicator in Searching for Eroded Primary Diamond Sources,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 5, 119–122 (2000).

  16. V. B. Vasilenko, N. N. Zinchuk, L. G. Kuznetsova, and V. P. Serenko, Petrochemistry of Subalkaline Carbonatite-Bearing Complexes of Siberia (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  17. L. G. Kuznetsova, V. B. Vasilenko, and N. N. Zinchuk, “Petrochemical Population Model of Kimberlites,” in Prediction of and Exploration for Primary and Placer Diamond Deposits. Proceedings of 2nd International Conference, Simferopol’-Yalta, Ukraine, 2004 (UkrGGRI, Kiev, 2004), pp. 81–87 [in Russian].

    Google Scholar 

  18. I. A. Hartigan, Clustering Algorithms (New York, 1975).

  19. I. G. Mac Qulen, “Some Methods for Classification and Analysis of Multivariate Observations,” in Proceedings of the Firth Berkley Symposium on Mathematical Statistics and Probabilities, Berkeley, US, 1967 (New York, 1967), pp. 64–73.

  20. A. F. Belousov, “Population Model in Studying Magmatic Associations,” Geol. Geofiz., No. 1, 14–20 (1979).

  21. V. B. Vasilenko, N. N. Zinchuk, and L. G. Kuznetsova, “Geodynamic Control of the Distribution of Kimberlite Fields in the Central and Northern Parts of the Yakutian Kimberlite Province,” Vestn. Voronezh. Gos. Univ., Ser. Geol., No. 3, 37–55 (2000).

  22. L. L. Perchuk and V. I. Vaganov, “Nature of the Yakutian Kimberlites,” in Petrological Problems of the Earth’s Crust and Upper Mantle (Nauka, Novosibirsk, 1978), pp. 27–48 [in Russian].

    Google Scholar 

  23. A. E. Ringwood, S. E. Kesson, W. Hibberson, and N. Ware, “Origin of Kimberlite and Related Magmas,” Earth Planet. Sci. Lett. 113(4), 255–263 (1992).

    Article  Google Scholar 

  24. Petrochemistry of Kimberlites, Ed. by A. D. Khar’kiv, V. V. Zuenko, N. N. Zinchuk, et al., (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  25. V. B. Vasilenko, N. N. Zinchuk, and L. G. Kuznetsova, “On the Correlation between the Compositions of Mantle Inclusions and Petrochemical Varieties of Kimberlites in Yakutian Diatremes,” Petrology 9(2), 179–189 (2001).

    Google Scholar 

  26. I. D. Ryabchikov, Thermodynamic Analysis of Minor Elements during the Crystallization of Silicate Melts (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  27. D. S. Korzhinskii, “Essay on Metasomatic Processes,” in Main Problems in Concept of Magmatic Ore Deposits (AN SSSR, Moscow, 1955), pp. 335–456 [in Russian].

    Google Scholar 

  28. L. N. Kogarko, “Ni/Co Ratio as an Indicator of the Mantle Origin of Magmas,” Geokhimiya, 1441–1445 (1973).

  29. A Brief Reference Book on Geochemistry, Ed. by G. V. Voitkevich, A. E. Miroshnikov, A. S. Povarennykh, and V. G. Prokhorov (Nedra, Moscow, 1977), [in Russian].

    Google Scholar 

  30. P. C. Rickwood, “Possible Evidence for Regional Chemical Heterogeneity of the Upper Mantle,” Contrib. Mineral. Petrol. 24(4), 354–358 (1969).

    Article  Google Scholar 

  31. I. P. Ilupin, F. V. Kaminskii, and E. V. Frantsesson, Geochemistry of Kimberlites (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  32. V. B. Vasilenko, A. Ya. Rotman, L. G. Kuznetsova, N.N. Zinchuk, V. A. Minin, and L. D. Kholodova, “Comparative Petrochemical Characteristics of the Postmagmatic Alteration Intensity of Kimberlites in Yakutia and Africa,” Vestn. Voronezhsk. Gos. Univ., Ser. Geol., No. 1, 64–46 (2008).

  33. V. K. Marshintsev, Vertical Heterogeneity of Kimberlite Bodies in Yakutia (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  34. N. V. Sobolev, Deep Nodules in Kimberlites and the Composition of the Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  35. J. A. Dalton and D. C. Presnall, “Phase Relations in the System CaO-MgO-Al2O3-SiO2-CO2 from 3.0 to 7.0 GPa: Carbonatites, Kimberlites and Carbonatite-Kimberlite Relations,” GAC/MAC Ann. Meeting. Abstr., 34 (1997).

  36. P. J. Wylie and W. -J. Lee, “Kimberlites, Carbonatites, Peridotites and Silicate-Carbonate Liquid Immiscibility Explained in CaO-(Na2O + K2O)-(MgO + FeO)-(SiO2 + Al2O3)-CO2,” Extended Abstracts of 7th International Kimberlite Conference, Cape Town, South Africa, 1998 (Cape Town, 1998), pp. 974–976.

  37. J. A. Dalton and B. J. Wood, “The Compositions of Primary Carbonate Melts and Their Evolution Through Wallrock Reaction in Mantle,” Earth Planet. Sci. Lett. 119, 511–525 (1993).

    Article  Google Scholar 

  38. G. P. Brey, V. K. Bulatov, A. V. Girnis, and Y. Lahaye, “Experimental Melting of Carbonated Peridotite at 6–10 GPa,” J. Petrol. 49, 797–821 (2008).

    Article  Google Scholar 

  39. G. H. Gudfinnsson and D. C. Presnall, “Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilitic, Basaltic, Picritic and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa,” J. Petrol. 46(3), 1645–1659 (2005).

    Article  Google Scholar 

  40. G. W. Franz and P. J. Wyllie, “Experimental Studies in the System CaO-MgO-SiO2-CO2-H2O,” in Ultramaphic and Related Rocks, Ed. by P. J. Wyllie (Wileys, New York, 1967), pp. 85–94.

    Google Scholar 

  41. C. D. Smith, M. E. McCallum, H. G. Coopersmith, and D. H. Eggler, “Petrochemistry and Structure of Kimberlites in the Front Range and Laramie Range, Colorado-Wyoming,” in Kimberlites, Diatremes and Diamonds: The Geology, Petrology and Geochemistry, Ed. by F. R. Boyd and H. A. O. Meyer, (Am. Geophys. Union, Washington, 2006), pp. 178–189.

    Google Scholar 

  42. I. D. Ryabchikov, G. P. Brey, and V. K. Bulatov, “Carbonate Melts in Equilibrium with Mantle Peridotites at 50 Kbar,” Petrologiya 1(2), 189–194 (1993).

    Google Scholar 

  43. L. L. Perchuk, O. G. Safonov, C. O. Yapaskurt, and J. M. Barton, “Crystal-Melt Equilibria Involving Potassium-Bearing Clinopyroxene as Indicator of Mantle-Derived Ultrahigh-Potassic Liquids: An Analytical Review,” Lithos 60(3–4), 89–111 (2002).

    Article  Google Scholar 

  44. G. E. Harlov and R. Davies, “Status Report of Stability of K-Rich Phases at Mantle Conditions,” Lithos 77(1–4), 647–653 (2004).

    Article  Google Scholar 

  45. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  46. T. Gasparik, “Transformation of Enstatite-Diopside-Jadeite Pyroxenes to Garnet,” Contrib. Mineral. Petrol. 102, 389–405 (1989).

    Article  Google Scholar 

  47. T. Gasparik, “Phase Relations in Transition Zone,” J. Geophys. Res. 95, 15751–15769 (1990).

    Article  Google Scholar 

  48. T. Gasparik, “A Petrogenesis Grid for the System MgO-Al2O3-SiO2,” J. Geol. 102, 97–109 (1994).

    Article  Google Scholar 

  49. C. Herzberg, “Solidus and Liquidus Temperatures and Mineralogies for Anhydrous Garnet-Lherzolite to 15 GPa,” Earth Planet. Inter 32(2), 193–202 (1983).

    Article  Google Scholar 

  50. G. Kramer, Mathematical Methods in Statistics (Princeton Univ., Princeton, 1975) [in Russian].

    Google Scholar 

  51. Yu. M. Borzdov, A. G. Sokol, Yu. N. Pal’yanov, A. A. Kalinin, N. V. Sobolev, “The Study of Diamond Crystallization from Alkaline Silicate, Carbonate, and Carbonate-Silicate Melts,” Dokl. Earth Sci. 366(4), 578–581 (1999).

    Google Scholar 

  52. Yu. N. Pal’yanov, V. S. Shatsky, N. V. Sobolev, and A. G. Sokol, “The Role of Mantle Ultrapotassic Fluids in Diamond Formation,” Proc. Nat. Acad. Sci. USA 104, 9122–9127 (2007).

    Article  Google Scholar 

  53. L. Zaks, The Theory of Statistical Inference (Wiley, New York, 1971).

    Google Scholar 

  54. H. W. Fesq, E. J. D. Kable, and J. J. Gurney, “Aspects of the Geochemistry of Kimberlites from the Premier Mine and Other South African Occurrences with Particular Reference to the REE,” Phys. Chem. Earth 9, 696–707 (1975).

    Google Scholar 

  55. A. F. Williams, The Genesis of the Diamond, 2 Vols, (E. Benn, London, 1932).

    Google Scholar 

  56. World’s Minerals Resources as of Early 1999 (MPRF GNPP “Aerogeologiya”, Moscow, 2000) [in Russian].

  57. A. Ya. Rotman, N. N. Zinchuk, S. F. Nosyko, and J. Shimuni, “Main Genetic Types of Diamond Occurrences on NE Angola,” in Geology of Diamonds: The Present and Future (VGU, Voronezh, 2005), pp. 594–609 [in Russian].

    Google Scholar 

  58. N. L. Dobretsov, V. V. Zuenko, and A. D. Khar’kiv, “Factors and Types of Diamondiferous Kimberlite Pipes of Yakutia,” Geol. Geofiz., No. 7, 31–39 (1972).

  59. H. J. L. Vogt, “On the Average Composition of the Earth’s Crust, with Particular Reference to the Contents of Phosphoric and Titanic Acids,” Skrifter, Norske Videnskaps-Acad. Oslo I. Mat. Nat. K 1. 7, 1–48 (1931).

  60. W. T. Pecora, “Carbonatites-A Review,” Geology 67, 1537–1556 (1956).

    Google Scholar 

  61. V. E. McKelvey, “Abundance and Distribution of Phosphorus in Lithosphere,” in Environmental Phosphorus Handbook, Ed. by E. Griffith, A. Beeton, and T. Spencer (Wileys, New York, 1973), pp. 13–31 [in Russian].

    Google Scholar 

  62. L. N. Kogarko, “Problems of the Genesis of Giant Apatite and Rare Metal Deposits of the Kola Peninsula, Russia,” Geol. Ore Dep. 41(5), 351–366 (1999).

    Google Scholar 

  63. L. N. Kogarko and I. D. Ryabchikov, “Volatiles in Magmatic Processes,” Geokhimiya, No. 9, 1293–1321 (1978).

  64. Kogarko, L.N., Genetic Problems of Agpaitic Magmas, (Nauka, Moscow, 1977).

    Google Scholar 

  65. V. B. Vasilenko, E. N. Bulgakova, and L. G. Kuznetsova, “Petrochemical Model of Gravitational Differentiation and Its Capabilities as a Tool for Testing Genetic Hypotheses,” Geol. Geofiz., No. 9, 38–45 (1989).

  66. V. B. Vasilenko, L. G. Kuznetsova, and L. M. Krivoputskaya, “Genesis of the Oshurkovskoe Deposit on the Basis of X-Ray Study of Apatite,” Geol. Geofiz., No. 10, 36–42 (1983).

  67. A. V. Tolstov, V. A. Minin, V. B. Vasilenko, L. G. Kuznetsova, O. N. Razumov, “A New Body of Highly Diamondiferous Kimberlites in the Nakyn Field of the Yakutian Kimberlite Province,” Russ. Geol. Geophys. 50(3), 162–173 (2009).

    Article  Google Scholar 

  68. V. B. Vasilenko, V. A. Minin, L. G. Kuznetsova, Yu. V. Geiko, N. N. Zinchuk, “Correlation between Rare-Earth Elements and Rock-Forming Oxides in the Kimberlites from Different Provinces,” Vestn. Voronezhsk. Gos. Univ., Ser. Geol., No. 2, 127–139 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Vasilenko.

Additional information

Original Russian Text © V.B. Vasilenko, L.G. Kuznetsova, A.V. Tolstov, V.A. Minin, 2012, published in Geokhimiya, 2012, Vol. 50, No. 12, pp. 1098–1118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilenko, V.B., Kuznetsova, L.G., Tolstov, A.V. et al. Evaluating the diamondiferous potential of unaltered kimberlites by the population models of their composition. Geochem. Int. 50, 988–1006 (2012). https://doi.org/10.1134/S0016702912120075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912120075

Keywords

Navigation