Skip to main content
Log in

Rydberg matter—A long-lived excited state of matter

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theory of condensed excited matter, the so-called Rydberg matter (RM), is examined briefly. Explicit results are given for several physical quantities, notably, the work function and the resistivity, for which experimental results exist. The most important aspects of the experiments, which are fully described elsewhere, are discussed. Large densities of Rydberg species are formed in the experiments with cesium vapor in contact with carbon (graphite) surfaces. The resistivity of the RM formed is found to be 10−2–10−3 Ω·m under varying conditions, while theory gives the order of 10−3 Ω·m. The work function is experimentally found to be less than 0.7 eV, perhaps even less than 0.5 eV. Two different methods were used to extract this quantity from thermionic diode data. These work function values are much lower than reported for any known material, especially at the high temperatures, and they thus give strong support for the description of RM as a very dilute metal. Theory gives values ranging from 0.6 down to 0.2 eV, depending on the principal quantum number, which is estimated to be n=12–14 from the lifetime calculations and from the known pressure. Supporting evidence is found from spectroscopic studies of RM, from jellium calculations, and from recent confirming experiments. From the good agreement between theory and experiment we conclude that RM exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Pis’ma Zh. Tekh. Fiz. 6(2) 218 (1980) [Sov. Phys. Tech. Phys. Lett. 6, 95 (1980)].

    Google Scholar 

  2. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Dokl. Akad. Nauk SSSR 260 1096 (1981) [Sov. Phys. Dokl. 26, 974 (1981)].

    Google Scholar 

  3. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Zh. Tekh. Fiz. 52 1474 (1982) [Sov. Phys. Tech. Phys. 27, 905 (1982)].

    Google Scholar 

  4. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Zh. Éksp. Teor. Fiz. 84, 442 (1983) [Sov. Phys. JETP 57, 256 (1983)].

    Google Scholar 

  5. N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).

    Article  ADS  Google Scholar 

  6. J.-L. Desplat, J. Appl. Phys. 54, 5494 (1983.)

    Article  ADS  Google Scholar 

  7. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Zh. Éksp. Teor. Fiz. 102 804 (1992) [Sov. Phys. JETP 75, 440 (1992)].

    Google Scholar 

  8. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Zh. Éksp. Teor. Fiz. 102 1109 (1992) [Sov. Phys. JETP 75, 602 (1992)].

    Google Scholar 

  9. R. Svensson, L. Holmlid and L. Lundgren, J. Appl. Phys. 70, 1489 (1991).

    Article  ADS  Google Scholar 

  10. R. Svensson and L. Holmlid, Surface Sci. 269/270, 695 (1992).

    Article  Google Scholar 

  11. J. B. C. Pettersson, L. Holmlid, and K. Moller, Appl. Surface Sci. 40, 151 (1989).

    Article  Google Scholar 

  12. K. Möller and L. Holmlid, Surface Sci. 204, 98 (1988).

    Article  Google Scholar 

  13. C. Aman, J. B. C. Pettersson, and L. Holmlid, Chem. Phys. 147, 189 (1990).

    Google Scholar 

  14. J. Lundin, K. Engvall, L. Holmlid, and P. G. Menon, Catal. Lett. 6, 85 (1990).

    Article  Google Scholar 

  15. C. Aman and L. Holmlid, Appl. Surface. Sci. 62, 201 (1992).

    Google Scholar 

  16. C. Aman and L. Holmlid, Appl. Surface. Sci. 64, 71 (1993).

    Google Scholar 

  17. C. Aman, J. B. C. Pettersson, H. Lindroth, and L. Holmlid, J. Mat. Research 7, 100 (1992).

    ADS  Google Scholar 

  18. E. Wallin, T. Hansson, and L. Holmlid, J. Phys. Condensed Matter 4, 9803 (1992).

    Article  ADS  Google Scholar 

  19. R. Svensson, B. Lonn, and L. Holmlid, Rev. Sci. Instrum. 66, 3244 (1995).

    Article  ADS  Google Scholar 

  20. V. Kaibyshev and E. Kennel, private communication.

  21. A. Nyberg and L. Holmlid, Surface Sci. 292, L801 (1993).

    Article  Google Scholar 

  22. M. Svanberg and L. Holmlid, Surface Sci. 315, L1003 (1994).

    Article  Google Scholar 

  23. B. E. R. Olsson, R. Svensson, and J. Davidsson, J. Phys. D: Appl. Phys. 28, 479 (1995).

    Article  ADS  Google Scholar 

  24. C. Aman and L. Holmlid, J. Cluster Sci. 3, 247 (1992).

    Google Scholar 

  25. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Proc. 9th Int. Conf. on Atm. Electricity, St. Petersburg; A. I. Voeikov Main Geophysical Observatory, 3, 838 (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1601–1610 (May 1997)

Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmlid, L., Manykin, E.A. Rydberg matter—A long-lived excited state of matter. J. Exp. Theor. Phys. 84, 875–880 (1997). https://doi.org/10.1134/1.558225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558225

Keywords

Navigation