Skip to main content
Log in

Three-dimensional structure of the enzyme dimanganese catalase from Thermus Thermophilus at 1 Å resolution

  • Structures of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The crystal structures of two forms of the enzyme dimanganese catalase from Thermus Thermophilus (native and inhibited by chloride) were studied by X-ray diffraction analysis at 1.05 and 0.98 Å resolution, respectively. The atomic models of the molecules were refined to the R factors 9.8 and 10%, respectively. The three-dimensional molecular structures are characterized in detail. The analysis of electron-density distributions in the active centers of the native and inhibited enzyme forms revealed that the most flexible side chains of the amino acid residues Lys162 and Glu36 exist in two interrelated conformations. This allowed us to obtain the structural data necessary for understanding the mechanism of enzymatic activity of the dimanganese catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Schonbaum and B. Chance, in The Enzymes, 3d ed., Ed. by P.D. Boyer (Academic Press, New York, 1976), Vol. 13, Part C, pp. 363–408.

    Google Scholar 

  2. I. Fita, A. M. Silva, M. R. N. Murthy, et al., Acta Crystallogr., Sect. B: Struct. Sci. 42, 497 (1986).

    Article  Google Scholar 

  3. G. N. Murshudov, W. R. Melik-Adamyan, A.I. Grebenko, et al., FEBS Lett. 312, 127 (1992).

    Article  Google Scholar 

  4. J. Bravo, N. Verdaguer, J. Tormo, et al., Structure 3, 491 (1995).

    Article  Google Scholar 

  5. B. K. Vainshtein, W. R. Melik-Adamyan, V. V. Barynin et al., J. Mol. Biol. 188, 49 (1986).

    Article  Google Scholar 

  6. P. Gouet, H.-M. Jouve, and O. Dideberg, J. Mol. Biol. 249, 933 (1995).

    Article  Google Scholar 

  7. M. J. Mate, M. Zamocky, L. M. Nykyri, et al., J. Mol. Biol. 268, 135 (1999).

    Google Scholar 

  8. V. V. Barynin and A. I. Grebenko, Dokl. Akad. Nauk SSSR 286, 461 (1986).

    Google Scholar 

  9. Y. Kono and I. Fridovich, J. Biol. Chem. 258, 6015 (1983).

    Google Scholar 

  10. V. V. Barynin, A. A. Vagin, W. R. Melik-Adamyan, et al., Dokl. Akad. Nauk SSSR 288, 877 (1986).

    Google Scholar 

  11. V. V. Barynin, P. D. Hempstead, A. A. Vagin, et al., J. Inorg. Biochem. 67, 196 (1997).

    Article  Google Scholar 

  12. V. V. Barynin, P. D. Hempstead, A. A. Vagin, et al., in EMBL Hamburg Outstation Annual Report (EMBL, Hamburg, 1999), p. 283.

    Google Scholar 

  13. S. V. Shlyapnikov, A. A. Dement’ev, A. J. G. Moir, et al., Biokhimiya (in press).

  14. S. V. Khangulov, V. V. Barynin, and S.V. Antonyuk-Barynina, Biochim. Biophys. Acta 1020, 25 (1990).

    Google Scholar 

  15. S. V. Khangulov, V. V. Barynin, N. V. Voevodskaya, et al., Biochim. Biophys. Acta 1020, 305 (1990).

    Google Scholar 

  16. G. S. Waldo, R. M. Fronko, and J. E. Penner-Hahn, Biochemistry 30, 10486 (1991).

    Article  Google Scholar 

  17. G. S. Waldo and J. E. Penner-Hahn, Biochemistry 34, 1507 (1995).

    Article  Google Scholar 

  18. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 2nd ed. (John Wiley, New York, 1969).

    Google Scholar 

  19. S. V. Antonyuk, V. V. Barynin, A. N. Popov, et al., in Proceedings of XVIIIth European Crystallographic Meeting (1998), Vol. 5, Part B, p. 493.

    Google Scholar 

  20. Z. Otwinowski and V. Minor, DENZO: Oscillation Data Processing Program for Macromolecular Crystallography (Yale University, New Haven, 1993), p. 56.

    Google Scholar 

  21. CCP4—Collaborative Computational Project No. 4, Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 760 (1994).

    Google Scholar 

  22. G. N. Murshudov and A. A. Vagin, Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240 (1997).

    Article  Google Scholar 

  23. G. M. Sheldric and T. R. Schneider, Methods Enzymol. 277, 319 (1997).

    Google Scholar 

  24. T. A. Jones, J. Y. Zou, and S. W. Cowan, Acta Crystallogr., Sect. A: Found. Crystallogr. 47, 110 (1991).

    Google Scholar 

  25. V. S. Lamzin and K. S. Wilson, Acta Crystallogr., Sect. D: Biol. Crystallogr. 49, 129 (1993).

    Article  Google Scholar 

  26. W. J. Cruickshank, Acta Crystallogr. 13, 774 (1960).

    Article  Google Scholar 

  27. W. J. Cruickshank, in Macromolecular Refinement: Proceedings of the CCP4 Study Weekend (1996), pp. 11–22.

  28. R. A. Laskovski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr. 26, 283 (1993).

    Google Scholar 

  29. R. M. Esnouf, J. Mol. Graph. 15, 133 (1997).

    Google Scholar 

  30. E. G. Hutchinson and J. M. Thornton, Protein Sci. 5, 212 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 45, No. 1, 2000, pp. 111–122.

Original Russian Text Copyright © 2000 by Antonyuk, Melik-Adamyan, Popov, Lamzin, Hempstead, Harrison, Artymyuk, Barynin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonyuk, S.V., Melik-Adamyan, V.R., Popov, A.N. et al. Three-dimensional structure of the enzyme dimanganese catalase from Thermus Thermophilus at 1 Å resolution. Crystallogr. Rep. 45, 105–116 (2000). https://doi.org/10.1134/1.171145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.171145

Keywords

Navigation