Skip to main content
Log in

Formation of a native-oxide structure on the surface of n-GaAs under natural oxidation in air

  • Semiconductors Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Using scanning tunneling microscopy, the native-oxide film on epitaxial n-GaAs(100) was found to be formed by tightly joining nanoclusters involving oxides of Ga and As as well as an excess As layer on the interface between Ga2O3 and n-GaAs. The fractal structure of surface of the clusters is formed by three levels of similar grainlike elements, whose sizes satisfy the ratio 9: 3: 1. In the three-dimensional case, approximately six finer grains can be arranged on a coarser grain. Two possible cases of forming the fractal structure of clusters were considered. If the As2O3 and As fluxes to the surface are identical (the first case), the formation of cluster structure is governed by the As diffusion over the cluster surface. If the As flux exceeds that of As2O3, the cluster-structure formation is governed by the Ga diffusion over the cluster surface (the second case). The cluster growth under normal conditions and, therefore, the increase in the oxide-film thickness cease when the clusters are tightly joined because it hampers reactants through the oxide film and the chemical reactions to proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Sinha and S. Mahapatra, Microelectron. J. 18(2), 48 (1987).

    Google Scholar 

  2. N. A. Torkhov and V. G. Bozhkov, Poverkhnost 8, 100 (2001).

    Google Scholar 

  3. A. V. Panin and N. A. Torkhov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 698 (2000) [Semiconductors 34, 671 (2000)].

    Google Scholar 

  4. A. V. Panin, A. P. Shugurov, and A. N. Puchkareva, Fiz. Mezomekh. 3(3), 53 (2000).

    Google Scholar 

  5. L. M. Weegels, T. Saitoh, and H. Kanbe, Appl. Phys. Lett. 66, 2870 (1995).

    Article  ADS  Google Scholar 

  6. M. Somogyi, Cryst. Res. Technol. 17, 1129 (1982).

    Google Scholar 

  7. P. Alnot, F. Wyczisk, and A. Friederich, Surf. Sci. 162, 708 (1985).

    Google Scholar 

  8. R. P. H. Chang and S. Darack, Appl. Phys. Lett. 38, 898 (1981).

    ADS  Google Scholar 

  9. A. Kishimoto, I. Suemune, K. Hamaoka, et al., Jpn. J. Appl. Phys. 29, 2273 (1990).

    Google Scholar 

  10. T. Kimura and C. Yamada, Jpn. J. Appl. Phys. 34, 1498 (1995).

    Google Scholar 

  11. N. Watanabe, T. Nittono, H. Ito, et al., J. Appl. Phys. 73, 8146 (1993).

    Article  ADS  Google Scholar 

  12. C. D. Thurmond, G. P. Schwartz, G. W. Kammlott, and B. Schwartz, Solid State Sci. Technol. 127, 1366 (1980).

    Google Scholar 

  13. M. Alonso and F. Soria, Surf. Sci. 182, 530 (1987).

    Article  Google Scholar 

  14. F. Bartels and W. Mönch, Solid State Commun. 57, 571 (1986).

    Article  Google Scholar 

  15. B. R. Singh, O. P. Daga, M. K. Sharma, and W. S. Kholke, Int. J. Electron. 52, 3 (1982).

    Google Scholar 

  16. I. Ya. Mittova, S. S. Lavrushina, V. R. Pshestanchik, and O. Yu. Novikova, Neorg. Mater. 12, 1448 (1997).

    Google Scholar 

  17. K. Watanabe, M. Hashiba, Y. Hirohata, et al., Thin Solid Films 56, 63 (1979).

    Article  Google Scholar 

  18. V. A. Kagadei, D. I. Proskurovskii, and L. M. Romas’, Mikroélektronika 27(3), 200 (1998).

    Google Scholar 

  19. N. A. Torkhov, in Proceedings of III International Conference on Radiation-Thermal Effects and Processes in Inorganic Materials (Tomsk, 2002), p. 301.

  20. V. L. Berkovits, A. B. Gordeeva, and V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 43, 985 (2001) [Phys. Solid State 43, 1018 (2001)].

    Google Scholar 

  21. I. Gerard, C. Debiemme-Chouvy, J. Vigneron, et al., Surf. Sci. 433–435, 131 (1999).

    Google Scholar 

  22. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    Google Scholar 

  23. M. Strome Mattsson, G. A. Niklasson, and C. G. Granqvist, Phys. Rev. B 54, 17884 (1996).

    Google Scholar 

  24. P. A. Artyunov and A. L. Tolstikhina, Mikroélektronika 26, 426 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 10, 2003, pp. 1205–1213.

Original Russian Text Copyright © 2003 by Torkhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torkhov, N.A. Formation of a native-oxide structure on the surface of n-GaAs under natural oxidation in air. Semiconductors 37, 1177–1184 (2003). https://doi.org/10.1134/1.1619513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1619513

Keywords

Navigation