Skip to main content
Log in

Anisotropy of amorphous nanogranular composites CoNbTa-SiO n and CoFeB-SiO n

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A comparative investigation of the magnetic properties of amorphous nanogranular composites (Co41Fe39B20) x (SiO n )100 − x and (Co86Nb12Ta2) x (SiO n )100 − x has been performed in the subpercolation region at temperatures in the range 4.2–300 K. The thermomagnetic dependences in the range 4.2–300 K and the processes of magnetization reversal and remanent magnetization relaxation at liquid-helium temperatures have been studied. It has been established that the average anisotropy constants of amorphous nanograins are equal to 3.6–7.0 kJ/m3 for the (Co41Fe39B20) x (SiO n )100 − x composites and 5–8 kJ/m3 for the (Co86Nb12Ta2) x (SiO n )100 − x composites. The fundamental differences in the concentration dependences of the anisotropy constant K eff and the coercive force H C have been revealed for the two systems under investigation. It has been demonstrated that, as the concentration of the metal phase increases, the quantities K eff and H C increase for the (Co86Nb12Ta2) x (SiO n )100 − x composites and decrease for the (Co41Fe39B20) x (SiO n )100 − x composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).

    Article  ADS  Google Scholar 

  2. Yu. K. Kovneristyi, E. K. Osipov, and E. A. Trofimova, Physicochemical Principles of the Design of Amorphous Metallic Alloys (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  3. W. B. Mi, L. Guo, E. Y. Jiang, Z. Q. Li, P. Wu, and H. L. Bai, J. Phys. D: Appl. Phys. 36, 2393 (2003).

    Article  ADS  Google Scholar 

  4. J. Hesse, H. Bremers, O. Hupe, M. Veith, E. W. Fritscher, and K. Valtchev, J. Magn. Magn. Mater. 212, 153 (2000).

    Article  ADS  Google Scholar 

  5. A. F. Rydman, T. L. Kirk, and R. C. Dynes, Solid State Commun. 114, 481 (2000).

    Article  Google Scholar 

  6. O. V. Stognei, Extended Abstract of the Doctoral Dissertation (Voronezh State Technical University, Voronezh, Russia, 2004).

  7. C. L. Chien, J. Appl. Phys. 69, 5267 (1991).

    Article  ADS  Google Scholar 

  8. O. A. Shmatko and Yu. V. Usov, Structure and Properties of Metals and Alloys: Electrical and Magnetic Properties of Metals and Alloys (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  9. H. Fujimori, H. Yoshimoto, T. Masumoto, and T. Mitera, J. Appl. Phys. 52, 1893 (1981).

    Article  ADS  Google Scholar 

  10. Materials Science of Amorphous Metals, Ed. by T. Masumoto (Ohmu, Tokyo, 1982; Metallurgiya, Moscow, 1987).

    Google Scholar 

  11. K. Handrich and S. Kobe, Amorph Ferro und Ferrimagnetika (Akademie, Berlin, 1980; Mir, Moscow, 1982) [in German and in Russian].

    Google Scholar 

  12. J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Phys. Rev. B: Condens. Matter 65, 064422 (2002).

    ADS  Google Scholar 

  13. S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B: Condens. Matter 52, 257 (1995).

    ADS  Google Scholar 

  14. V. Franco-Puntes, X. Batlle, and A. Labarta, J. Magn. Magn. Mater. 221, 45 (2000).

    Article  ADS  Google Scholar 

  15. J. L. Dormann, L. Bessais, and D. A. Fiorani, J. Phys. C: Solid State Phys. 21, 2015 (1988).

    Article  ADS  Google Scholar 

  16. G. Herzer, J. Magn. Magn. Mater. 157/158, 133 (1996).

    Article  ADS  Google Scholar 

  17. M. Hanson, C. Johansson, M. S. Pedersen, and S. Morup, J. Phys.: Condens. Matter 7, 9269 (1995).

    Article  ADS  Google Scholar 

  18. M. Hanson, C. Johansson, and S. Morup, J. Phys.: Condens. Matter 7, 9263 (1995).

    Article  ADS  Google Scholar 

  19. A. Carvin and C. L. Chien, J. Appl. Phys. 67, 938 (1990).

    Article  ADS  Google Scholar 

  20. D. Lin, A. C. Nunes, C. F. Majkrzak, and A. E. Berkowitz, J. Magn. Magn. Mater. 145, 343 (1995).

    Article  ADS  Google Scholar 

  21. J. L. Dormann, A. Belayachi, J. Maknani, A. Ezzir, M. Cruz, M. Godinho, R. Cherkaoui, and M. Nogues, J. Magn. Magn. Mater. 185, 1 (1998).

    Article  ADS  Google Scholar 

  22. S. Sankar, A. E. Berkowitz, D. Dender, J. A. Borchers, R. W. Erwin, S. R. Kline, and D. J. Smith, J. Magn. Magn. Mater. 221, 1 (2000).

    Article  ADS  Google Scholar 

  23. M. El-Hilo, K. O’Grady, and R. W. Chantrell, J. Magn. Magn. Mater. 114, 295 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Stognei.

Additional information

Original Russian Text © O.V. Stognei, A.V. Sitnikov, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 12, pp. 2356–2364.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stognei, O.V., Sitnikov, A.V. Anisotropy of amorphous nanogranular composites CoNbTa-SiO n and CoFeB-SiO n . Phys. Solid State 52, 2518–2526 (2010). https://doi.org/10.1134/S1063783410120127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410120127

Keywords

Navigation