Skip to main content
Log in

Effective Hamiltonians for heterostructures based on direct-gap III–V semiconductors. The kp perturbation theory and the method of invariants

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A sequential procedure for obtaining effective kp Hamiltonians for arbitrary heterostructures based on direct-gap semiconductors with identical lattice parameters is suggested. The heterostructure potential is described with the help of characteristic functions f l (a), which indicate atom substitution in sublattice l of the reference crystal in unit cell a. The kp perturbation theory for heterostructures, which takes into account the scattering effects of charge carriers on the additional local potential that emerges due to atom substitution, is developed. A method of constructing the corresponding effective kp Hamiltonians by the method of invariants, which takes into account the microscopic symmetry of interfaces, is suggested. Along with the band parameters, the obtained Hamiltonians contain additional parameters, which have no analogs in bulk materials. The derivation of the effective Hamiltonians of bands Γ1, Γ6, Γ15, and Γ8 in heterostructures based on cubic III–V semiconductors with atom substitution in one sublattice is given as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. von Roos, Phys. Rev. B 27, 7547 (1983).

    Article  ADS  Google Scholar 

  2. B. A. Foreman, Phys. Rev. B 76, 045327 (2007).

    Article  ADS  Google Scholar 

  3. B. A. Foreman, Phys. Rev. B 48, 4964 (1993).

    Article  ADS  Google Scholar 

  4. A. V. Rodina, A. Yu. Alekseev, Al. L. Efros, M. Rosen, and B. K. Meyer, Phys. Rev. B 65, 125302 (2002).

    Article  ADS  Google Scholar 

  5. A. V. Rodina and A. Yu. Alekseev, Phys. Rev. B 73, 115312 (2006).

    Article  ADS  Google Scholar 

  6. E. L. Ivchenko, A. Yu. Kaminski, and U. Rössler, Phys. Rev. B 54, 5852 (1996).

    Article  ADS  Google Scholar 

  7. H. C. Liu, Appl. Phys. Lett. 51, 1019 (1987).

    Article  ADS  Google Scholar 

  8. Y. Fu, M. Willander, E. L. Ivchenko, and A. A. Kiselev, Phys. Rev. B 47, 13498 (1993).

    Article  ADS  Google Scholar 

  9. G. F. Glinskii, V. A. Lakisov, A. G. Dolmatov, and K. O. Kravchenko, Nanotechnology 11, 233 (2000).

    Article  ADS  Google Scholar 

  10. L. Leibler, Phys. Rev. B 12, 4443 (1975).

    Article  ADS  Google Scholar 

  11. L. Leibler, Phys. Rev. B 16, 863 (1977).

    Article  ADS  Google Scholar 

  12. M. G. Burt, J. Phys.: Condens. Matter 4, 6651 (1992).

    ADS  Google Scholar 

  13. E. E. Takhtamirov and V. A. Volkov, Phys. Low-Dim. Struct. 10–11, 407 (1995).

    Google Scholar 

  14. E. E. Takhtamirov and V. A. Volkov, Semicond. Sci. Technol. 12, 77 (1997).

    Article  ADS  Google Scholar 

  15. E. E. Takhtamirov and V. A. Volkov, Phys. Usp. 40, 1071 (1997).

    Article  ADS  Google Scholar 

  16. G. F. Glinskii and K. O. Kravchenko, Phys. Solid State 40, 803 (1998).

    Article  ADS  Google Scholar 

  17. G. F. Glinskii and K. O. Kravchenko, condmat/9808174 (unpublished).

  18. E. E. Takhtamirov and V. A. Volkov, J. Exp. Theor. Phys. 89, 1000 (1999).

    Article  ADS  Google Scholar 

  19. G. F. Glinskii and K. O. Kravchenko, Izv. SPbGETU LETI, No. 1, 20 (1999).

    Google Scholar 

  20. G. F. Glinskii and V. A. Lakisov, Izv. SPbGETU LETI, No. 1, 5 (2000).

    Google Scholar 

  21. A. G. Dolmatov and G. F. Glinskii, Izv. SPbGETU LETI, No. 1, 10 (2000).

    Google Scholar 

  22. B. A. Foreman, Phys. Rev. B 72, 165344 (2005).

    Article  ADS  Google Scholar 

  23. B. A. Foreman, Phys. Rev. B 72, 165345 (2005).

    Article  ADS  Google Scholar 

  24. G. F. Glinskii, in Nanotechnology: Physics, Processes, Diagnostics, Devices, Ed. by V. V. Luchinin and Yu.M. Tairov (Fizmatlit, Moscow, 2006), p. 16 [in Russian].

  25. G. F. Glinskii, Semiconductors and Semiconductor Heterostructures: Symmetry and Electronic States (Tekhnolit, St.-Petersburg, 2008) [in Russian].

    Google Scholar 

  26. E. Takhtamirov and R. V. N. Melnik, New J. Phys. 12, 123006 (2010).

    Article  ADS  Google Scholar 

  27. P. C. Klipstein, Phys. Rev. B 81, 235314 (2010).

    Article  ADS  Google Scholar 

  28. L. J. Sham, Phys. Rev. 150, 720 (1966).

    Article  ADS  Google Scholar 

  29. G. F. Glinskii and M. S. Mironova, Izv. SPbGETU LETI, No. 2, 8 (2013).

    Google Scholar 

  30. G. F. Glinskii, M. S. Mironova, J. Phys.: Conf. Ser. 461, 012040 (2013).

    ADS  Google Scholar 

  31. G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).

    Google Scholar 

  32. G. F. Glinskii, Group Theory Methods in Quantum Mechanics (SPbGETU LETI, St.-Petersburg, 2012) [in Russian].

    Google Scholar 

  33. A. I. Shpakovskii and G. F. Glinskii, Nauch.-Tekh. Vedom. SPbGPU, No. 3, 56 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Glinskii.

Additional information

Original Russian Text © G.F. Glinskii, M.S. Mironova, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 10, pp. 1359–1369.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinskii, G.F., Mironova, M.S. Effective Hamiltonians for heterostructures based on direct-gap III–V semiconductors. The kp perturbation theory and the method of invariants. Semiconductors 48, 1324–1334 (2014). https://doi.org/10.1134/S106378261410008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261410008X

Keywords

Navigation