Skip to main content
Log in

Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  2. J. E. Moore and L. Balents, Phys. Rev. B: Condens. Matter 75, 121306 (2007).

    Article  ADS  Google Scholar 

  3. R. Roy, Phys. Rev. B: Condens. Matter 79, 195322 (2009).

    Article  ADS  Google Scholar 

  4. L. Fu and C. L. Kane, Phys. Rev. B: Condens. Matter 76, 045302 (2007).

    Article  ADS  Google Scholar 

  5. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B: Condens. Matter 78, 195424 (2008).

    Article  ADS  Google Scholar 

  6. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  7. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  8. D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science (Washington) 329, 821 (2010).

    Article  ADS  Google Scholar 

  9. J. G. Analytis, R. D. McDonald, S. C. Riggs, J.-H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys. 6, 960 (2010).

    Article  Google Scholar 

  10. J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009).

    Article  ADS  Google Scholar 

  11. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B: Condens. Matter 81, 241301 (2010).

    Article  ADS  Google Scholar 

  12. J. G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B: Condens. Matter 81, 205407 (2010).

    Article  ADS  Google Scholar 

  13. K. Eto, Z. Ren, A. A. Taskin, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 81, 195309 (2010).

    Article  ADS  Google Scholar 

  14. Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 84, 075316 (2011).

    Article  ADS  Google Scholar 

  15. Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 84, 165311 (2011).

    Article  ADS  Google Scholar 

  16. Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 85, 155301 (2012).

    Article  ADS  Google Scholar 

  17. B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. Lett. 109, 176801 (2012).

    Article  ADS  Google Scholar 

  18. T. Chen and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 87, 165119 (2013), arXiv:1212.4183 [condmat.str-el].

    Article  ADS  Google Scholar 

  19. B. Skinner and B. I. Shklovskii, Phys. Rev. B: Condens. Matter 87, 075454 (2013).

    Article  ADS  Google Scholar 

  20. H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. S. Hor, R. J. Cava, and A. Yazdani, Nat. Phys. 7, 939 (2011).

    Article  Google Scholar 

  21. L. V. Keldysh and G. P. Proshko, Sov. Phys. Solid State 5(12), 2481 (1964).

    Google Scholar 

  22. Y. S. Gal’pern and A. L. Efros, Sov. Phys. Semicond. 6(6), 941 (1972).

    Google Scholar 

  23. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984). http://www.tpi.umn.edu/shklovskii

    Book  Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 35, 610 (1972).

    ADS  Google Scholar 

  25. A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).

    Article  ADS  Google Scholar 

  26. E. M. Gershenzon, I. N. Kurilenko, and L. B. Litvak-Gorskaya, Sov. Phys. Semicond. 8(6), 689 (1974).

    Google Scholar 

  27. N. G. Yaremenko, Sov. Phys. Semicond. 9(5), 554 (1975).

    Google Scholar 

  28. A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B: Condens. Matter 45, 11568 (1992).

    Article  ADS  Google Scholar 

  29. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

    Article  ADS  MATH  Google Scholar 

  30. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  31. M. S. Loth and B. I. Shklovskii, J. Phys.: Condens. Matter 21, 424104 (2009).

    Article  ADS  Google Scholar 

  32. F. Stern, Phys. Rev. B: Solid State 9, 4597 (1974).

    Article  ADS  Google Scholar 

  33. J. Xiong, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, arXiv:1211.1906 [cond-mat.mes-hall] (2012).

  34. S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. USA 104, 18392 (2007).

    Article  ADS  Google Scholar 

  35. D. Culcer, E. H. Hwang, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B: Condens. Matter 82, 155457 (2010).

    Article  ADS  Google Scholar 

  36. D. Culcer and R. Winkler, Phys. Rev. B: Condens. Matter 78, 235417 (2008).

    Article  ADS  Google Scholar 

  37. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

    Article  ADS  Google Scholar 

  38. Q. Li, E. Rossi, and S. Das Sarma, Phys. Rev. B: Condens. Matter 86, 235443 (2012).

    Article  ADS  Google Scholar 

  39. D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).

    Google Scholar 

  40. M. M. Fogler, Phys. Rev. Lett. 103, 236801 (2009).

    Article  ADS  Google Scholar 

  41. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B: Condens. Matter 82, 081305 (2010).

    Article  ADS  Google Scholar 

  42. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.-F. Jia, J. Wang, Y. Wang, B.-F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X.-L. Qi, C.-X. Liu, S.-C. Zhang, and Q.-K. Xue, Phys. Rev. Lett. 105, 076801 (2010).

    Article  ADS  Google Scholar 

  43. Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science (Washington) 329, 659 (2010).

    Article  ADS  Google Scholar 

  44. Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, and S.-C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).

    Article  ADS  Google Scholar 

  45. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  46. B. Seradjeh, J. E. Moore, and M. Franz, Phys. Rev. Lett. 103, 066402 (2009).

    Article  ADS  Google Scholar 

  47. Y. Zhang, K. He, C. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys. 6, 584 (2010).

    Article  Google Scholar 

  48. B. I. Shklovskii and A. L. Efros, JETP Lett. 44(11), 669 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Shklovskii.

Additional information

Dedicated to the memory of Professor Anatoly Larkin

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, B., Chen, T. & Shklovskii, B.I. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators. J. Exp. Theor. Phys. 117, 579–592 (2013). https://doi.org/10.1134/S1063776113110150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113110150

Keywords

Navigation