Skip to main content
Log in

Nonlinear optical properties of biomineral and biomimetical nanocomposite structures

  • Advanced Laser Technologies
  • Published:
Laser Physics

Abstract

The transmission of laser femtosecond pulses by spicules of marine glass sponges and monolithic amorphous nanocomposite silica biomaterials synthesized on the basis of natural polysaccharides has been experimentally investigated. The strong non-linear optical properties of these biominerals have been revealed in spectral characteristics of transmitted ultra-short pulses (USP). Comparative analysis of the transmission spectra of USP reveals that spicules exhibit much stronger non-linear optical properties than quartz optical fibers. Recently new monolithic nanocomposite silica biomaterials were synthesized on the basis of various natural polysaccharides and completely water-soluble Si-precursor. The shape of transmitted spectrums through both spicules and new nanocomposite biomaterials demonstrates major changes indicating the broadening with formation markedly strong anti-Stokes component in the output spectrum with generation of supercontinuum spectra. The carried out studies have showed that the nature combination of spongin protein with silicon dioxide extracted from seawater by silicatein protein in glass sponge spicules and monolithic nanocomposite silica biomaterials are biological and biomimetical nanocomposite materials with unique optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kaminskii, J. Dong, H. J. Eichler, J. Hanuza, K. Ueda, M. Maczka, H. Rhee, and M. Bettinelli, Laser Phys. Lett. 6, 821 (2009).

    Article  ADS  Google Scholar 

  2. A. A. Kaminskii, S. N. Bagayev, K. Ueda, J. Dong, and H. J. Eichler, Laser Phys. Lett. 7, 270 (2010).

    Article  ADS  Google Scholar 

  3. A. A. Kaminskii, L. Bohaty, P. Becker, P. Held, H. Rhee, H. J. Eichler, and J. Hanuza, Laser Phys. Lett. 6, 335 (2009).

    Article  ADS  Google Scholar 

  4. P. Becker, L. Bohaty, J. Liebertz, H.-J. Kleebe, M. Muller, H. J. Eichler, H. Rhee, J. Hanuza, and A. A. Kaminskii, Laser Phys. Lett. 7, 367 (2010).

    Article  ADS  Google Scholar 

  5. P. Innocenzi and B. Lebeau, J. Mater. Chem. 15, 3821 (2005).

    Article  Google Scholar 

  6. X. Q. Wang, H. L. Fang, Q. Ren, J. Sun, T. B. Li, G. H. Zhang, and D. Xu, Laser Phys. 19, 1858 (2009).

    Article  ADS  Google Scholar 

  7. L. R. Dalton, Pure Appl. Chem. 76, 1421 (2004).

    Article  Google Scholar 

  8. L. Dalton, Ph. Sullivan, D. Bale, and B. Olbricht, Solid-State Electron. 51, 1263 (2007).

    Article  ADS  Google Scholar 

  9. H. Liu, W. Tan, J. Si, X. Liu, and X. Hou, Opt Express 16, 13486 (2008).

    Article  ADS  Google Scholar 

  10. Yu. A. Shchipunov, in Bio-inorganic Hybrid Nanomaterials, Ed. by E. Ruiz-Hitzky, K. Ariga, and Yu. M. Lvov (Wiley, Weinheim, 2007), pp. 75–117.

    Chapter  Google Scholar 

  11. H. C. Schröder, X. Wang, W. Tremel, H. Ushijima, and W. E. G. Müller, Nat. Prod. Rep. 25, 455 (2008).

    Article  Google Scholar 

  12. Yu. N. Kulchin, O. A. Bukin, S. S. Voznesensky, A. N. Galkina, S. V. Gnedenkov, A. L. Drozdov, V. G. Kuryavy, T. L. Maltseva, I. G. Nagorny, S. L. Sinebruhov, and A. I. Therednichenko, Quantum Electron. 38, 51 (2008).

    Article  ADS  Google Scholar 

  13. Yu. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, A. N. Galkina, A. L. Drozdov, and I. G. Nagorny, in Biosilica in Evolution, Morphogenesis, and Nanobiology, Progress in Molecular and Subcellular Biology, Marine Molecular Biotechnology, Ed. by W. E. G. Muller and M. A. Grachev (Springer, Berlin, 2009), pp. 315–340.

    Google Scholar 

  14. H. Ehrlich, D. Janussen, P. Simon, V. V. Bazhenov, N. P. Shapkin, C. Erler, M. Mertig R. Born, S. Heinemann, T. Hanke, H. Worch, and J. N. Vournakis, J. Nanomater., 670235 (2008).

  15. Yu. N. Kulchin, S. S. Voznesenski, O. A. Bukin, A. V. Bezverbnyi, A. L. Drozdov, I. G. Nagorny, and A. N. Galkina, Opt. Spectrosc. 107, 442 (2009).

    Article  ADS  Google Scholar 

  16. Yu. N. Kulchin, S. N. Bagayev, O. A. Bukin, S. S. Voznesenski, A. L. Drozdov, Yu. A. Zinin, I. G. Nagorny, E. V. Pestryakov, and V. I. Trunov, Tech. Phys. Lett. 34, 7 (2008).

    Article  Google Scholar 

  17. R. W. Boyd, Nonlinear Optics (Academic, San Diego, 2003).

    Google Scholar 

  18. Y. Kodama and A. Hasegawa, IEEE J. Quant. Electron. 23, 510 (1987).

    Article  ADS  Google Scholar 

  19. J. H. Marburger, Prog. Quant. Electron. 4, 35 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Kulchin.

Additional information

Original Text © Astro, Ltd., 2011.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulchin, Y.N., Bezverbny, A.V., Bukin, O.A. et al. Nonlinear optical properties of biomineral and biomimetical nanocomposite structures. Laser Phys. 21, 630–636 (2011). https://doi.org/10.1134/S1054660X11050136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X11050136

Keywords

Navigation