Skip to main content
Log in

High power and highly efficient Nd:YAG laser emitting at 1123 nm

  • Solid State and Liquid Lasers
  • Published:
Laser Physics

Abstract

A diode-end-pumped continuous-wave (CW) Nd:YAG laser emitting at 1123 nm is realized efficiently in a 25-mm-long cavity. A composite Nd:YAG (cNd:YAG) crystal is selected as the gain medium. With an incident diode power of 26.1 W, an output power of up to 9.3 W is obtained, corresponding to an optical-to-optical conversion efficiency of 35.6%. The laser performances at 1123 nm are compared between composite Nd:YAG and common Nd:YAG crystals. The results show that composite Nd:YAG is a better choice for 1123-nm laser generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).

    Article  ADS  Google Scholar 

  2. B. K. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett. 10, 62–64 (1985).

    Article  ADS  Google Scholar 

  3. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz Offset Phase-Locking of Nd:YAG 1319 nm Nonplanar Ring Lasers,” Electron. Lett. 18, 1242–1243 (1989).

    Article  ADS  Google Scholar 

  4. M. Lei, M. Gong, H. Zhang, Q. Liu, and Y. Wang, “Experimental Investigation of Laser Power Addition with Composite Four-Mirror Cavity,” Laser Phys. Lett. 4, 16–19 (2007).

    Article  Google Scholar 

  5. C. Yin, L. Huang, M. Gong, P. Yan, Q. Liu, and F. He, “A Novel Compact Side-Pumped Bonded Slab Micro-chip Laser,” Laser Phys. Lett. 4, 584–587 (2007).

    Article  Google Scholar 

  6. V. Kubeccaronek, W. Zendzian, J. K. Jabczynski, J. Kwiatkowski, H. Jelinkova, A. Stintz, and J.-C. Diels, “Side Pumped Nd:YAG Slab Laser Mode-Locked Using Multiple Quantum Well Saturable Absorbers,” Laser Phys. Lett. 5, 29–33 (2008).

    Article  Google Scholar 

  7. M. Gong, H. Zhang, H. Kang, D. Wang, L. Huang, P. Yan, and Q. Liu, “A Chamfered-Edge-Pumped Planar Waveguide Solid-State Laser,” Laser Phys. Lett. 5, 518–521 (2008).

    Article  Google Scholar 

  8. K. Otsuka and T. Ohtomo, “Polarization Properties of Laser-Diode-Pumped Micro-Grained Nd:YAG Ceramic Lasers,” Laser Phys. Lett. 5, 659–663 (2008).

    Article  Google Scholar 

  9. H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An End-Pumped Nd:YAG Planar Waveguide Laser with an Optical to Optical Conversion Efficiency of 58%,” Laser Phys. Lett. 5, 879–881 (2008).

    Article  Google Scholar 

  10. H. Kang, H. Zhang, D. Wang, L. Huang, P. Yan, Q. Liu, and M. Gong, “A Diode Side-Pumped YAG/Nd:YAG/YAG Composite Crystal,” Laser Phys. 18, 947–950 (2008).

    Article  ADS  Google Scholar 

  11. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm Second-Stokes Generation in KTiOAsO4,” Laser Phys. Lett. 6, 121–124 (2009).

    Article  Google Scholar 

  12. C. Zhang, X. Y. Zhang, Q. P. Wang, S. Z. Fan, X. H. Chen, Z. H. Cong, Z. J. Liu, Z. Zhang, H. J. Zhang, and F. F. Su, “Efficient Extracavity Nd:YAG/BaWO4 Raman Laser,” Laser Phys. Lett. 6, 505–508 (2009).

    Article  Google Scholar 

  13. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z.H. Cong, Z. J. Liu, S. Z. Fan, and H. J. Zhang, “Diode Side-Pumped Actively Q-switched Nd:YAG/SrWO4 Raman Laser with High Average Output Power of over 10 W at 1180 nm,” Laser Phys. Lett. 6, 363–366 (2009).

    Article  Google Scholar 

  14. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, Berlin, 1999).

    MATH  Google Scholar 

  15. S. Lehmann and J. Busenberg, “A Water Vapour DIAL System Using Diode Pumped Nd:YAG Lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th Intern. Laser Radar Conf., Ed. by A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger (Springer, Berlin, 1996), pp. 309–312.

    Google Scholar 

  16. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Möze, “230 mW of Blue Light from a Thulium Doped Upconversion Fiber Laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1100–1102 (1997).

    Google Scholar 

  17. I. J. Booth, J. L. Archambault, and B. F. Ventrudo, “Photodegradation of Near-Infrared-Pumped Tm3+-Doped ZBLAN Fiber Upconversion Lasers,” Opt. Lett. 21, 348–350 (1996).

    Article  ADS  Google Scholar 

  18. W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, and C. Hubert, “DPSS Yellow-Green 561-nm Lasers for Improved Fluorochrome Detection by Flow Cytometry,” Cytom. Part A 68, 36–44 (2005).

    Article  Google Scholar 

  19. E. J. Zang, J. P. Cao, Y. Li, T. Yang, and D. M. Hong, “Single-Frequency 1.25 W Monolithic Lasers at 1123 nm,” Opt. Lett. 32, 250–252 (2007).

    Article  ADS  Google Scholar 

  20. N. Moore, W. A. Clarkson, D. C. Hanna, S. Lehmann, and J. Bösenberg, “Efficient Operation of a Diode-Bar-Pumped Nd:YAG Laser on the Low-Gain 1123-nm Line,” Appl. Opt. 38, 5761–5764 (1999).

    Article  ADS  Google Scholar 

  21. Y. F. Chen, Y. P. Lan, and S. W. Tsai, “High-Power Diode-Pumped Actively Q-Switched Nd:YAG Laser at 1123 nm,” Opt. Commun. 234, 309–313 (2004).

    Article  ADS  Google Scholar 

  22. Y. F. Chen and Y. P. Lan, “Diode-Pumped Passively Q-Switched Nd:YAG Laser at 1123 nm,” Appl. Phys. B 79, 29–31 (2004).

    Article  ADS  Google Scholar 

  23. J. Y. Huang, H. C. Liang, K. W. Su, H. C. Lai, Y.-F. Chen, and K. F. Huang, “InGaAs Quantum-Well Saturable Absorbers for a Diode-Pumped Passively Q-Switched Nd:YAG Laser at 1123 nm,” Appl. Opt. 46, 239–242 (2007).

    Article  ADS  Google Scholar 

  24. F. Q. Jia, Q. Zheng, Q. H. Xue, and Y. K. Bu, “LD-Pumped Nd:YAG/LBO 556 nm Yellow Laser,” Opt. Laser Technol. 38, 569–572 (2006).

    Article  ADS  Google Scholar 

  25. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of Thermal Lensing Effects between Single-End and Double-End Diffusion-Bonded Nd:YVO4 Crystals for 4 F 3/24 I 11/2 and 4 F 3/24 I 13/2 Transitions,” Opt. Express 25, 21155–21160 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Zhang.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.S., Wang, Q.P., Zhang, X.Y. et al. High power and highly efficient Nd:YAG laser emitting at 1123 nm. Laser Phys. 19, 2159–2162 (2009). https://doi.org/10.1134/S1054660X09230121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09230121

Keywords

Navigation