Skip to main content
Log in

Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach

  • Modern Trends in Laser Physics
  • Published:
Laser Physics

Abstract

We review our up-to-date result on the development of widely tunable monochromatic THz sources, implemented based on difference-frequency generation (DFG) in GaSe, ZnGeP2, and GaP. Using a GaSe crystal, the output wavelength was tuned in the range from 66.5 μm to 5664 μm (from 150 cm−1 to 1.77 cm−1) with the highest peak power 389 W. This tuning range is the widest ever produced for a continuously tunable and coherent tabletop THz source. Moreover, the conversion efficiency 0.1% is also the highest ever achieved for a tabletop system. On the other hand, based on DFG in a ZnGeP2 crystal, the output wavelength was tuned in the ranges 83.1–1642 μm and 80.2–1416 μm for two phase-matching configurations. The output power has reached 134 W so far. Finally, using a GaP crystal, the output wavelength was tuned in the range 71.1–2830 μm, whereas the highest peak power was 15.6 W. The advantage of using GaP over GaSe and ZnGeP2 is that crystal rotation is no longer required for wavelength tuning. Instead, one just needs to tune the wavelength of one mixing beam within the bandwidth of as narrow as 15.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley, London, 1984).

    Google Scholar 

  2. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Gating, “Optical Properties of the Atmosphere,” in Handbook of Optics, Ed. by W. G. Driscoll (McGraw Hill, New York, 1978).

    Google Scholar 

  3. C. Tomasi, “Vertical Mass Loading of Aerosol Particles by Sun-Photometric Measurements,” in Optical Remote Sensing of Air Pollution, Ed. by P. Camagni and S. Sandroni (Elsevier, New York, 1984).

    Google Scholar 

  4. K. H. Yang, P. L. Richards, and Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).

    Google Scholar 

  5. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).

    Article  ADS  Google Scholar 

  6. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446 (1962); D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    Article  ADS  Google Scholar 

  7. M. van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).

    ADS  Google Scholar 

  8. R. Köhler, A. Tredicucci, F. Beltram, et al., Nature 417, 156 (2002).

    Article  ADS  Google Scholar 

  9. H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, et al., Appl. Phys. Lett. 33, 151 (1978).

    Article  ADS  Google Scholar 

  10. W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, Opt. Lett. 27, 1454 (2002).

    Google Scholar 

  11. W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).

    ADS  Google Scholar 

  12. W. Shi and Y. J. Ding, “Tunable Coherent Radiation from Terahertz to Microwave by Mixing Two Infrared Frequencies in a 47-mm-Long GaSe Crystal,” submitted to Int. J. High Speed Electron. Syst.

  13. W. Shi and Y. J. Ding, “Coherent and Widely-Tunable THz and Millimeter Waves Based on Difference-Frequency Generation in GaSe and ZnGeP2,” Opt. Photonics News, 57 (2002).

  14. W. Shi and Y. J. Ding, Appl. Phys. Lett. 83, 848 (2003).

    ADS  Google Scholar 

  15. W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).

    Article  ADS  Google Scholar 

  16. W. Shi and Y. J. Ding, Opt. Lett. 30, 1030 (2005).

    ADS  Google Scholar 

  17. W. Shi, X. Mu, Y. J. Ding, and N. Fernelius, Appl. Phys. Lett. 80, 3889 (2002).

    ADS  Google Scholar 

  18. W. Shi and Y. J. Ding, Laser Phys. Lett. 1, 560 (2004).

    Article  Google Scholar 

  19. H. Sun, W. Shi, Z. Fu, Y. J. Ding, and Y. B. Zotova, “Bragg Reflectors and 2-D Photonic Crystals in the THz Region,” in Terahertz for Military and Security Applications III, Ed. by R. J. Hwu, D. L. Woolard, and M. J. Rosker (SPIE, Bellingham, WA, London, 2005), Proc. SPIE 5790, 104–115 (2005).

    Google Scholar 

  20. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, New York, 1998).

    Google Scholar 

  21. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999).

    Google Scholar 

  22. P. D. Mason, D. J. Jackson, and E. K. Gorton, Opt. Commun. 110, 163 (1994).

    Article  ADS  Google Scholar 

  23. G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, Sov. J. Quantum Electron. 17, 860 (1987).

    Article  Google Scholar 

  24. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, Appl. Phys. Lett. 21, 553 (1972).

    Article  Google Scholar 

  25. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, J. Opt. Soc. Am. B 18, 1307 (2001).

    ADS  Google Scholar 

  26. A. Yariv, Quantum Eletronics (Wiley, New York, 1988; Sov. Radio, Moscow, 1973).

    Google Scholar 

  27. Y. J. Ding and I. B. Zotova, J. Nonlinear Opt. Phys. Mater. 11, 75 (2002).

    Article  ADS  Google Scholar 

  28. Y. J. Ding and W. Shi, J. Nonlinear Opt. Phys. Mater. 12, 557 (2003).

    Article  ADS  Google Scholar 

  29. W. L. Fraust and C. H. Henry, Phys. Rev. Lett. 17, 1265 (1966).

    ADS  Google Scholar 

  30. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, Appl. Phys. Lett. 83, 237 (2003).

    Article  ADS  Google Scholar 

  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  32. D. Zhang, L. A. Gordon, Y. S. Wu, et al., Opt. Lett. 23, 1010 (1998).

    ADS  Google Scholar 

  33. W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “A Novel Detection Scheme for THz Waves Based on Upconversion at Room Temperature,” in CWM5, CLEO/QELS, Baltimore, MD, 2005.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y.J., Shi, W. Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach. Laser Phys. 16, 562–570 (2006). https://doi.org/10.1134/S1054660X06040050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06040050

PACS numbers

Navigation