Skip to main content
Log in

CD271 enrichment does not help isolating mesenchymal stromal cells from G-CSF-mobilized peripheral blood

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Reports on the isolation of mesenchymal stromal cells (MSCs) from granulocyte colony stimulating factor mobilized peripheral blood (G-CSF-mobilized PB) using regular culturing techniques are controversial. Enrichment techniques such as CD133 isolation have increased the success rates. CD271 is a wellknown marker for enrichment of MSCs from bone marrow (BM). In the present study, we aimed to find out whether CD271 enrichment can help isolation of MSCs from G-CSF-mobiiized PB. Five G-CSF-mobilized PB samples were collected from the remnant parts of the bags used for BM transplantation. Five BM samples were used as the control. Mononuclear cells (MNCs) from both resources were collected and underwent magnetic sorting for CD271-positive cells. The isolated cells were cultured, undergoing flowcytometry and differentiation assays to determine if they fulfill MSCs characteristics. CD271-positive portion of G-CSF-mobilized PB did not yield any cell outgrowth but the BM counterpart could successfully form MSC colonies. Although the percentage of CD271+ cells showed no difference between BM-MNCs and G-CSF-mobilized PB-MNCs, hematopoietic markers such as CD45, CD34 and CD133 composed a higher percentage of CD271-positive cells in the G-CSF-tnobiiized PB group. Results obtained indicated that CD271 enrichment does not help isolation of MSCs from G-CSF-mobilized PB. In this source, almost all of the CD271+ cells are from hematopoietic origin and the frequency of MSCs is so low that possibly during the process of cell isolation most of them are lost and the isolation fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

bone marrow

G-CSF-mobilized PB:

granulocyte colony-stimulating factor mobilized peripheral blood

MNC:

mononuclear cell

MSC:

mesenchymal stromal cell

References

  1. Vassaghi A., Dehghani A., Khademalhosseini Z., Maharlooei M.K., Monabati A., Attar A. 2013. Parameters that influence the isolation of multipotent mesenchymal stromal cells from human umbilical cord blood. Hematol. Oncol. Stem Cell Ther. 6, 1–8.

    Article  Google Scholar 

  2. Ahrari I., Purhabibi Zarandi N., Khosravi Maharlooei M., Monabati A., Armin A., Ahrari S. 2013. Adipose tissue derived multipotent mesenchymal stromal cells can be isolated using serum-free media. Iran. Red Crescent Med. J. 15, 324–329.

    Article  PubMed  Google Scholar 

  3. Attar A., Langeroudi A.G., Vassaghi A., Ahrari I., Maharlooei M.K., Monabati A. 2013. Role of CD271 enrichment in the isolation of mesenchymal stromal cells from umbilical cord blood. Cell Biol. Int. 37, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  4. Hadaegh Y., Niknam M., Maharlooei M.K., Tavangar M.S., Attar A., Aarabi A.M., Monabati A. 2013. Characterization of stem cells from the pulp of unerupted third molar tooth. Indian. J. Dent. Res. 24, 78–85.

    Google Scholar 

  5. Lund T.C., Tolar J., Orchard P.J. 2008. Granulocyte colony-stimulating factor mobilized CFU-F can be found in the peripheral blood but have limited expansion potential. Hematologica. 93, 908–912.

    Article  CAS  Google Scholar 

  6. He Q., Wan C., Li G. 2007. Concise review: Multipotent mesenchymal stromal cells in blood. Stem Cells. 25, 69–77.

    Article  PubMed  CAS  Google Scholar 

  7. Villaron E.M., Perez-Simon J.A., San Miguel J.F., del Canizo C. 2005. Bone marrow mesenchymal stem cells chimerism after allogeneic hematopoietic transplantation. Exp. Hematol. 33, 605–611.

    Article  Google Scholar 

  8. Villaron E.M., Almeida J., Lopez-Holgado N., Alococeba M., Sanchez-Abarca L.I., Sanchez-Guido F.M. 2004. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica. 89, 1421–1427.

    PubMed  Google Scholar 

  9. Kristina B., Haifa A.A., Annette R., Christina F., Michael H., Manja K. 2009. Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation. 87, 217–221.

    Article  Google Scholar 

  10. Kassis I., Zangi L., Rivkin R., Levdansky L., Samuel S., Marx G., Gorodetsky R. 2006. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transpl. 37, 967–976.

    Article  CAS  Google Scholar 

  11. Tondreau T., Meuleman N., Delforge A., et al. 2005. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: Proliferation, Oct4 expression, and plasticity. Stem Cells. 23, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  12. Quirici N., Soligo D., Bossolasco P., Servida F., Lumini C., Lambertenghi Deliliers G. 2002. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30, 783–791.

    Article  PubMed  CAS  Google Scholar 

  13. Poloni A., Maurizi G., Rosini V., Mondini E., Mancini S., Discepoli G., Biasio S., Battaglini G., Felicetti S., Berardinelli E., Serrani F., Leoni P. 2009. Selection of CD271+ cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy. 11, 153–162.

    Article  PubMed  CAS  Google Scholar 

  14. Erices A., Conget P., Minguell J. 2000. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235–242.

    Article  PubMed  CAS  Google Scholar 

  15. Miao Z., Jin J., Chen L., et al. 2006. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30, 681–687.

    Article  PubMed  CAS  Google Scholar 

  16. Chong P.P., Selvaratnam L., Abbas A.A., Kamarul T. 2012. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J. Orthop. Res. 30, 634–642.

    Article  PubMed  CAS  Google Scholar 

  17. Fernández M., Simon V., Herrera G., Cao C., Del Favero H., Minguell J.J. 1997. Detection of stromal cells inp eripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transpl. 20, 265–271.

    Article  Google Scholar 

  18. Kuznetsov S.A., Mankani M.H., Gronthos S., Satomura K., Bianco P., Robey P.G. 2001. Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140.

    Article  PubMed  CAS  Google Scholar 

  19. Ojeda-Uribe M., Brunot A., Lenat A., Legros M. 1993. Failure to detect spind-leshaped fibroblastoid cell progenitors in PBPC collections. Acta Haematol. 90, 139–143.

    Article  PubMed  CAS  Google Scholar 

  20. Lazarus H.M., Haynesworth S.E., Gerson S.L., Caplan A.I. 1997. Human bone marrow derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J. Hematother. 6, 447–455.

    PubMed  CAS  Google Scholar 

  21. Conrad C., Gottgens B., Kinston S., Ellwart J., Huss R. 2002. GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood derived CD34(-)CD105(+) mesenchymal cell line. Exp. Hematol. 30, 887–895.

    Article  PubMed  CAS  Google Scholar 

  22. Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. 2005. International society for cellular therapy clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy. 7, 393–395.

    Article  PubMed  CAS  Google Scholar 

  23. Karp J.M., Leng Teo G.S. 2009. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell. 6, 206–216.

    Article  Google Scholar 

  24. Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. 2008. Wound repair and regeneration. Nature. 15, 314–321.

    Article  Google Scholar 

  25. Li F., Huang Q., Chen J., Peng Y., Roop D.R., Bedford J.S., Li C.Y. 2010. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 23, ra13.

    Article  Google Scholar 

  26. Ries C., Egea V., Karow M., Kolb H., Jochum M., Neth P. 2007. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of humanmesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood. 109, 4055–4063.

    Article  PubMed  CAS  Google Scholar 

  27. Wexler S.A., Donaldson C., Denning-Kendall P., Rice C., Bradley B., Hows J.M. 2003. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol. 121, 368–374.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Attar.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 5, pp. 787–795.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrari, I., Attar, A., Zarandi, N.P. et al. CD271 enrichment does not help isolating mesenchymal stromal cells from G-CSF-mobilized peripheral blood. Mol Biol 47, 685–691 (2013). https://doi.org/10.1134/S0026893313050051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313050051

Keyword

Navigation