Skip to main content
Log in

Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review we analyze the main works on amyloid formation of insulin. There are many environmental factors affecting the formation of insulin amyloid fibrils (and other amyloidogenic proteins) such as: protein concentration, pH, ionic strength of solution, medium composition (anions, cations), presence of denaturants (urea, guanidine chloride) or stabilizers (saccharose), temperature regime, agitation. Since polymorphism is potentially crucial for human diseases and may underlie the natural variability of some amyloid diseases, in this review we focus attention on polymorphism that is an important biophysical difference between native protein folding suggesting correspondence between the amino acid sequence and unique folding state, and formation of amyloid fibrils, when the same amino acid sequence can form amyloid fibrils of different morphology. At present, according to the literature data, we can choose three ways of polymerization of insulin molecules depending on the nucleus size. The first suggests that fibrillogenesis can occur through assembly of insulin monomers. The second suggests that precursors of fibrils are dimers, and the third assumes that precursors of fibrils are oligomers. Additional experimental works and new methods of investigation and assessment of results are needed to clarify the general picture of insulin amyloid formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

20%-AA:

20% acetic acid

AFM:

atom force spectroscopy

CR:

Congo Red

cryo-EM:

cryoelectron microscopy

DSL:

dynamic scattering light

H/D-exchange:

hydrogen-deuterium exchange

IR:

infrared spectroscopy

M/L:

mass per length

MS:

mass spectroscopy

NMR:

nuclear magnetic resonance

PHF:

paired helical filaments

RD:

X-ray diffraction

R g :

radius of gyration

SANS:

small-angle neutron diffraction

SAXS:

small angle X-ray scattering

STEM:

scanning transmission electron microscopy

TEM:

transmission electron microscopy

ThS:

Thioflavin S

ThT:

Thioflavin T

References

  1. Dische, F. E., Wernstedt, C., Westermark, G. T., Westermark, P., Pepys, M. B., Rennie, J. A., Gilbey, S. G., and Watkins, P. J. (1988) Diabetologia, 31, 158–161.

    Article  PubMed  CAS  Google Scholar 

  2. Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) J. Pharm. Sci., 86, 517–525.

    Article  PubMed  CAS  Google Scholar 

  3. Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S., and Eisenberg, D. (2009) Proc. Natl. Acad. Sci. USA, 106, 18990–18995.

    Article  PubMed  CAS  Google Scholar 

  4. Ahmad, A., Uversky, V., Hong, D., and Fink, A. (2005) J. Biol. Chem., 280, 42669–42675.

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad, A., Millett, I. S., Doniach, S., Uversky, V. N., and Fink, A. L. (2003) Biochemistry, 42, 11404–11416.

    Article  PubMed  CAS  Google Scholar 

  6. Berson, J. F., Theos, A. C., Harper, D. C., Tenza, D., Raposo, G., and Marks, M. S. (2003) J. Cell Biol., 161, 521–533.

    Article  PubMed  CAS  Google Scholar 

  7. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P. R., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Science, 325, 328–332.

    Article  PubMed  CAS  Google Scholar 

  8. Shewmaker, F., McGlinchey, R. P., and Wickner, R. B. (2011) J. Biol. Chem., 286, 16533–16540.

    Article  PubMed  CAS  Google Scholar 

  9. Fowler, D. M., Koulov, A. V., Balch, W. E., and Kelly, J. W. (2007) Trends Biochem. Sci., 32, 217–224.

    Article  PubMed  CAS  Google Scholar 

  10. Fandrich, M., and Dobson, C. M. (2002) EMBO J., 21, 5682–5690.

    Article  PubMed  Google Scholar 

  11. Goldsbury, C., Baxa, U., Simon, M. N., Steven, A. C., Engel, A., Wall, J. S., Aebi, U., and Muller, S. A. (2011) J. Struct. Biol., 173, 1–13.

    Article  PubMed  CAS  Google Scholar 

  12. Kajava, A. V., Baxa, U., and Steven, A. C. (2010) FASEB J., 24, 1311–1319.

    Article  PubMed  CAS  Google Scholar 

  13. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) J. Biol. Chem., 272, 22364–22372.

    Article  PubMed  CAS  Google Scholar 

  14. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1997) Chem. Biol., 4, 119–125.

    Article  PubMed  CAS  Google Scholar 

  15. Kodali, R., and Wetzel, R. (2007) Curr. Opin. Srtuct. Biol., 17, 48–57.

    Article  CAS  Google Scholar 

  16. Gellermann, J. P., Byrnes, H., Striebinger, A., Ullrich, K., Mueller, R., Hillen, H., and Barghorn, S. (2008) Neirobiology, 30, 212–220.

    CAS  Google Scholar 

  17. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. (1998) Proc. Natl. Acad. Sci. USA, 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  18. Nybo, M., Svehag, S. E., and Nielsen, H. (1999) Scand. J. Immunol., 49, 219–223.

    Article  PubMed  CAS  Google Scholar 

  19. Goldsbure, C., Goldie, K., Pellaud, J., Seelig, J., Frey, P., Muller, S. A., Kistler, J., Cooper, G. J. S., and Aebi, U. (2000) J. Struct. Biol., 130, 352–362.

    Article  Google Scholar 

  20. Goldsbure, C., Wirtz, S., Muller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. (2000) J. Struct. Biol., 130, 217–231.

    Article  Google Scholar 

  21. Lashuel, H. A., Hartley, D. M., Petre, B. M., Wall, J. S., Simon, M. N., Walz, T., and Lansbury, P. T., Jr. (2003) J. Mol. Biol., 332, 795–808.

    Article  PubMed  CAS  Google Scholar 

  22. Mandelkow, E., von Bergen, M., Biernat, J., and Mandelkow, E. M. (2007) Brain. Pathol., 17, 83–90.

    Article  PubMed  CAS  Google Scholar 

  23. Andersen, C. B., Hicks, M. R., Vetri, V., Vandahl, B., Rahbek-Nielsen, H., Throgersen, H., Throgersen, I. B., Enghild, J. J., Serpell, L. C., Rischel, C., and Otzen, D. E. (2010) J. Mol. Biol., 397, 932–946.

    Article  PubMed  CAS  Google Scholar 

  24. Khurana, R., Uversky, V. N., Nielsen, L., and Fink, A. L. (2001) J. Biol. Chem., 276, 22715–22721.

    Article  PubMed  CAS  Google Scholar 

  25. Bousset, L., Redeker, V., Decottignies, P., Dubois, S., Le Marechal, P., and Melki, R. (2004) Biochemistry, 43, 5022–5032.

    Article  PubMed  CAS  Google Scholar 

  26. Lee, C.-C., Nayak, A., Sethuraman, A., Belfort, G., and McRae, G. J. (2007) Biophys. J., 92, 3448–3458.

    Article  PubMed  CAS  Google Scholar 

  27. Sunde, M., and Blake, C. (1997) Adv. Protein Chem., 50, 123–159.

    Article  PubMed  CAS  Google Scholar 

  28. Fandrich, M., Schmidt, M., and Grigorieff, N. (2011) TIBS, 36, 338–345.

    PubMed  Google Scholar 

  29. Jimenez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M., and Saibil, H. R. (2002) EMBO J., 18, 815–821.

    Article  Google Scholar 

  30. Fraser, P. E., Nguyen, J. T., Surewicz, W. K., and Kirschner, D. A. (1991) Biophys. J., 60, 1190–1201.

    Article  PubMed  CAS  Google Scholar 

  31. Bauer, H. H., Aebi, U., Haner, M., Hermann, R., Muller, M., Arvinte, T., and Merkle, H. P. (1995) J. Struct. Biol., 115, 1–15.

    Article  PubMed  CAS  Google Scholar 

  32. Goldsbury, C. S., Cooper, G. J. S., Goldie, K. N., Muller, S. A., Saafi, E. L., Gruijters, W. T. M., Misur, M. P., Engel, A., and Aebi, U. (1997) J. Struct. Biol., 119, 17–27.

    Article  PubMed  CAS  Google Scholar 

  33. Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., and Robinson, C. V. (2000) Protein Sci., 9, 1960–1967.

    Article  PubMed  CAS  Google Scholar 

  34. Pedersen, J. S., Dikov, D., Flink, J. L., Hjuler, H. A., Christiansen, G., and Otzen, D. E. (2006) J. Mol. Biol., 355, 501–523.

    Article  PubMed  CAS  Google Scholar 

  35. Petkova, A. T., Leapman, R. D., Guo, Z., Yau, W.-M., Mattson, M. P., and Tycko, R. (2005) Science, 307, 262–265.

    Article  PubMed  CAS  Google Scholar 

  36. Fandrich, M., Meinhardt, J., and Grigorieff, N. (2009) Prion, 3, 89–93.

    Article  PubMed  Google Scholar 

  37. White, H. E., Hodgkinson, J. L., Jahn, T. R., Cohen-Krausz, S., Gosal, W. S., Muller, S., Orlova, E. V., Radford, S. E., and Saibil, H. R. (2009) J. Mol. Biol., 389, 48–57.

    Article  PubMed  CAS  Google Scholar 

  38. Chen, B., Thurber, K. R., Shewmaker, F., Wickner, R. B., and Tycko, R. (2009) Proc. Natl. Acad. Sci. USA, 106, 14339–14344.

    Article  PubMed  CAS  Google Scholar 

  39. Ryazantsev, S., Abuladze, N., Newman, D., Bondar, G., Kurtz, I., and Pushkin, A. (2007) FEBS Lett., 581, 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  40. Peschek, J., Braun, N., Franzmann, T. M., Georgalis, Y., Haslbeck, M., Weinkauf, S., and Buchner, J. (2009) Proc. Natl. Acad. Sci. USA, 106, 13272–13277.

    Article  PubMed  CAS  Google Scholar 

  41. Kayed, R., Bernhagen, J., Greenfield, N., Sweimeh, K., Brunner, H., Voelter, W., and Kapurniotu, A. (1999) J. Mol. Biol., 287, 781–796.

    Article  PubMed  CAS  Google Scholar 

  42. Wood, S. J., Wypych, J., Steavenson, S., Louis, J.-C., Citron, M., and Biere, A. L. (1999) J. Biol. Chem., 274, 19509–19512.

    Article  PubMed  CAS  Google Scholar 

  43. Friedhoff, P., von Bergen, M., Mandelkow, E. M., Davies, P., and Mandelkow, E. (1998) Proc. Natl. Acad. Sci. USA, 95, 15712–15717.

    Article  PubMed  CAS  Google Scholar 

  44. Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R., Bates, G. P., Lehrach, H., and Wanker, E. E. (1999) Proc. Natl. Acad. Sci. USA, 96, 4604–4609.

    Article  PubMed  CAS  Google Scholar 

  45. Jarrett, J. T., and Lansbury, P. T., Jr. (1993) Cell, 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  46. Ruschak, A. M., and Miranker, A. D. (2007) Proc. Natl. Acad. Sci. USA, 104, 12341–12346.

    Article  PubMed  CAS  Google Scholar 

  47. Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., and Baldus, M. (2005) Proc. Natl. Acad. Sci. USA, 102, 15871–15876.

    Article  PubMed  CAS  Google Scholar 

  48. Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Mercola, D. A., and Vijayan, M. (1971) Nature, 231, 506–511.

    Article  PubMed  CAS  Google Scholar 

  49. Bentley, G., Dodson, E., Dodson, G., Hodgkin, D., and Mercola, D. (1976) Nature, 261, 166–168.

    Article  PubMed  CAS  Google Scholar 

  50. Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., and Swenson, D. (1989) Nature, 338, 594–596.

    Article  PubMed  CAS  Google Scholar 

  51. Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M., Hubbard, R. E., Isaacs, N. W., Reynolds, C. D., Sakabe, K., Sakabe, N., and Vijayan, N. M. (1988) Phil. Trans. Roy. Soc. Lond. Ser., 319, 369–456.

    Article  CAS  Google Scholar 

  52. Badger, J., Harris, M. R., Reynolds, C. D., Evans, A. C., Dodson, E. J., Dodson, G. G., and North, A. C. (1991) Acta Crystallogr. Sect. B Struct. Sci., 47, 127–136.

    Article  Google Scholar 

  53. Brange, J., Whittingham, J., Edwards, D., You-Shang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci., 72, 470–476.

    CAS  Google Scholar 

  54. Brange, J., and Volund, A. (1999) Adv. Drug Delivery Rev., 35, 307–335.

    Article  CAS  Google Scholar 

  55. Weiss, M. A., Nguyen, D. T., Khait, I., Inouye, K., Frank, B. H., Beckage, M., O’shea, E., Shoelson, S. E., Karplus, M., and Neuringer, L. J. (1989) Biochemistry, 28, 9855–9873.

    Article  PubMed  CAS  Google Scholar 

  56. Hua, Q. X., and Weiss, M. A. (1991) Biochemistry, 30, 5505–5515.

    Article  PubMed  CAS  Google Scholar 

  57. Burke, M. J., and Rougvie, M. A. (1972) Biochemistry, 11, 2435–2439.

    Article  PubMed  CAS  Google Scholar 

  58. Waugh, D. F. (1946) J. Am. Chem. Soc., 68, 247–250.

    Article  CAS  Google Scholar 

  59. Nielsen, L., Khurana, R., Coats, A., Frokjaer, S., Brange, J., Vyas, S., Uversky, V. N., and Fink, A. L. (2001) Biochemistry, 40, 6036–6046.

    Article  PubMed  CAS  Google Scholar 

  60. Nielsen, L., Frokjaer, S., Carpenter, J., and Brange, J. (2001) J. Pharm. Sci., 90, 29–37.

    Article  PubMed  CAS  Google Scholar 

  61. Khurana, R., Ionesku-Zanetti, C., Pope, M., Li, J., Nielson, L., Ramirez-Alvarado, M., Regan, L., Fink, A. L., and Carter, S. A. (2003) Biophys. J., 85, 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  62. Glenner, G. G., Eanes, E. D., Bladen, H. A., Linke, R. P., and Termine, J. D. (1974) J. Histochem. Cytochem., 22, 1141–1158.

    Article  PubMed  CAS  Google Scholar 

  63. Saiki, M., Honda, S., Kawasaki, K., Zhou, D., Kaito, A., Konakahara, T., and Morii, H. (2005) J. Mol. Biol., 348, 983–998.

    Article  PubMed  CAS  Google Scholar 

  64. Uversky, V. N. (2010) FEBS J., 277, 2940–2953.

    Article  PubMed  CAS  Google Scholar 

  65. Pease, L. F., Sorci, M., Guha, S., Tsai, D.-H., Zachariah, M. R., Tarlov, M. J., and Belford, G. (2010) Biophys. J., 99, 3979–3985.

    Article  PubMed  CAS  Google Scholar 

  66. Turnell, W. G., and Finch, J. T. (1992) J. Mol. Biol., 227, 1205–1223.

    Article  PubMed  CAS  Google Scholar 

  67. Nayak, A., Sorci, M., Krueger, S., and Belford, G. (2008) Proteins, 74, 556–565.

    Article  Google Scholar 

  68. Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S., and Eisenberg, D. (2009) Proc. Natl. Acad. Sci. USA, 106, 18990–18995.

    Article  PubMed  CAS  Google Scholar 

  69. Nielsen, L., Frokjaer, S., Brange, J., Uversky, V. N., and Fink, A. L. (2001) Biochemistry, 40, 8397–8409.

    Article  PubMed  CAS  Google Scholar 

  70. Vestergaard, B., Groenning, M., Roessle, M., Kastrup, J. S., van de Weert, M., Flink, J. M., Frokjaer, S., Gajhede, M., and Svergun, D. (2007) PLoS Biol., 5, e134.

    Article  PubMed  Google Scholar 

  71. Podesta, A., Tiana, G., Milani, P., and Manno, M. (2006) Biophys. J., 90, 589–597.

    Article  PubMed  CAS  Google Scholar 

  72. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., and Selkoe, D. J. (2008) Nat. Med., 14, 837–842.

    Article  PubMed  CAS  Google Scholar 

  73. Xu, Y., Seeman, D., Sun, L., and Dubin, P. L. (2012) Langmuir, 28, 579–586.

    Article  PubMed  CAS  Google Scholar 

  74. Serpell, L. C., Fraser, P. E., and Sunder, M. (1999) Meth. Enzymol., 309, 526–536.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galzitskaya.

Additional information

Published in Russian in Biokhimiya, 2012, Vol. 77, No. 11, pp. 1478–1490.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selivanova, O.M., Galzitskaya, O.V. Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein. Biochemistry Moscow 77, 1237–1247 (2012). https://doi.org/10.1134/S0006297912110028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912110028

Key words

Navigation