Skip to main content
Log in

Promyelocytic leukemia protein interacts with werner syndrome helicase and regulates double-strand break repair in γ-irradiation-induced DNA damage responses

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We show here that γ-irradiation leads to the translocation of endogenous Werner syndrome helicase (WRN) from nucleoli to nucleoplasmic DNA double strand breaks (DSBs), and WRN plays a role in damage repair. The relocation of WRN after irradiation was perturbed by promyelocytic leukemia protein (PML) knockdown and enhanced by PML IV over-expression. PML IV physically interacted with WRN after irradiation. Amino acids (a.a.) 394 to 433 of PML were necessary for this interaction and the nucleoplasmic translocation of WRN and were involved in DSB repair and cellular sensitivity to γ-irradiation. Taken together, our results provide molecular support for a model in which PML IV physically interacts with and regulates the translocation of WRN for DNA damage repair through its 394–433 a.a. domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATM:

ataxia-telangiectasia mutated protein

DAPI:

4′,6-diamidino-2-phenylindol

DSB:

double-strand break

GFP:

green fluorescent protein

γ-H2AX:

phosphorylated histone H2AX

HEL:

human embryo lung fibroblasts

IRIF:

ionizing radiation induced foci

PML:

promyelocytic leukemia protein

PML NBs:

promyelocytic leukemia nuclear bodies

WRN:

Werner syndrome helicase

WS:

Werner’s syndrome

References

  1. Muftuoglu, M., Oshima, J., von Kobbe, C., Cheng, W. H., Leistritz, D. F., and Bohr, V. A. (2008) Hum. Genet., 124, 369–377.

    Article  PubMed  CAS  Google Scholar 

  2. Sakamoto, S., Nishikawa, K., Heo, S. J., Goto, M., Furuichi, Y., and Shimamoto, A. (2001) Genes Cells, 6, 421–430.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng, W. H., Sakamoto, S., Fox, J. T., Komatsu, K., Carney, J., and Bohr, V. A. (2005) FEBS Lett., 579, 1350–1356.

    Article  PubMed  CAS  Google Scholar 

  4. Lan, L., Nakajima, S., Komatsu, K., Nussenzweig, A., Shimamoto, A., and Oshima, J. (2005) J. Cell Sci., 118, 4153–4162.

    Article  PubMed  CAS  Google Scholar 

  5. Dellaire, G., and Bazett-Jones, D. P. (2004) Bioessays, 26, 963–977.

    Article  PubMed  CAS  Google Scholar 

  6. Blander, G., Zalle, N., Daniely, Y., Taplick, J., Gray, M. D., and Oren, M. (2002) J. Biol. Chem., 277, 50934–50940.

    Article  PubMed  CAS  Google Scholar 

  7. Vaitiekunaite, R., Butkiewicz, D., Krzesniak, M., Przybylek, M., Gryc, A., Snietura, M., Benedyk, M., Harris, C. C., and Rusin, M. (2007) Mech. Ageing Dev., 128, 650–661.

    Article  PubMed  CAS  Google Scholar 

  8. Bao-Lei, T., Zhu-Zhong, M., Yi, S., Jun-Jie, Q., Yan, D., and Hua, L. (2006) J. Cell Biochem., 97, 561–571.

    Article  PubMed  Google Scholar 

  9. Bruno, S., Ghiotto, F., Fais, F., Fagioli, M., Luzi, L., and Pelicci, P. G. (2003) Blood, 101, 3514–3519.

    Article  PubMed  CAS  Google Scholar 

  10. Futami, K., Takagi, M., Shimamoto, A., Sugimoto, M., and Furuichi, Y. (2007) Biol. Pharm Bull., 30, 1958–1961.

    Article  PubMed  CAS  Google Scholar 

  11. Kinner, A., Wu, W., Staudt, C., and Iliakis, G. (2008) Nucleic Acids Res., 36, 5678–5694.

    Article  PubMed  CAS  Google Scholar 

  12. Gerashchenko, B. I., and Dynlacht, J. R. (2008) Cytometry A, 75A, 245–252.

    Article  Google Scholar 

  13. Tanaka, T., Huang, X., Halicka, H. D., Zhao, H., Traganos, F., and Albino, A. P. (2007) Cytometry A, 71, 648–661.

    Article  PubMed  Google Scholar 

  14. Kurose, A., Tanaka, T., Huang, X., Traganos, F., Dai, W., and Darzynkiewicz, Z. (2006) Cytometry A, 69, 212–221.

    Article  PubMed  Google Scholar 

  15. Burhans, W. C., and Weinberger, M. (2007) Nucleic Acids Res., 35, 7545–7556.

    Article  PubMed  CAS  Google Scholar 

  16. Bakkenist, C. J., and Kastan, M. B. (2003) Nature, 421, 499–506.

    Article  PubMed  CAS  Google Scholar 

  17. Mirzoeva, O. K., and Petrini, J. H. (2001) Mol. Cell Biol., 21, 281–288.

    Article  PubMed  CAS  Google Scholar 

  18. Carbone, R., Pearson, M., Minucci, S., and Pelicci, P. G. (2002) Oncogene, 21, 1633–1640.

    Article  PubMed  CAS  Google Scholar 

  19. Xu, Z. X., Timanova-Atanasova, A., Zhao, R. X., and Chang, K. S. (2003) Mol. Cell Biol., 23, 4247–4256.

    Article  PubMed  CAS  Google Scholar 

  20. Kahyo, T., Mostoslavsky, R., Goto, M., and Setou, M. (2008) FEBS Lett., 582, 2479–2483.

    Article  PubMed  CAS  Google Scholar 

  21. Li, K., Casta, A., Wang, R., Lozada, E., Fan, W., and Kane, S. (2008) J. Biol. Chem., 283, 7590–7598.

    Article  PubMed  CAS  Google Scholar 

  22. Kirsten, J., Carol, S., and Paul, S. F. (2001) Oncogene, 20, 7223–7233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Song or Zhixian Sun.

Additional information

These authors contributed equally to this work.

Published in Russian in Biokhimiya, 2011, Vol. 76, No. 5, pp. 673–679.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM10-310, February 13, 2011.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Song, Y., Qian, J. et al. Promyelocytic leukemia protein interacts with werner syndrome helicase and regulates double-strand break repair in γ-irradiation-induced DNA damage responses. Biochemistry Moscow 76, 550–554 (2011). https://doi.org/10.1134/S000629791105004X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791105004X

Key words

Navigation