Skip to main content
Log in

Determination of Blood Flow Velocity and Transit Time in Cerebral Arteriovenous Malformation using Microdroplet Angiography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Advancement in imaging and biomedical technology has improved the use of catheter-based transarterial embolization (occlusive therapy) of cerebral arteriovenous malformations (AVMs). Among a variety of embolic agents, liquid adhesives (acrylates) have proven to be more successful in permanent obliteration of AVMs. The use of liquid adhesives requires the experience and skill of the operator. However, acquiring accurate information on blood flow and transit times through the AVM prior to embolization can optimize the treatment. In addition, knowledge of the polymerization time and behavior of the acrylate enables a complete and safe occlusion of the arteriovenous transition within the AVM nidus. Standard commercially available iodine-based contrast agents seem to be insufficient to determine AVM transit times from angiograms. For a more accurate assessment of AVM transit times, the use of a nonsoluble contrast agent (Ethiodol) and a high-speed digital subtraction angiography (DSA) is suggested. Small amounts (<20 μl) of Ethiodol were infused to create microdroplets and traced using DSA at 15 fps. Transit time, defined as the time interval required for a droplet to reach the venous part of the AVM after being flushed from the tip of the catheter, could be accurately calculated. Postprocessing was used to calculate trajectories and velocities of microdroplets. © 2001 Biomedical Engineering Society.

PAC01: 8719Uv, 4755Dz, 8719La, 8759Bh

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bennett, M., M. D. Stein, M. Samuel, and M. D. Wolpert. Arteriovenous malformation of the brain: Current concepts and treatment. Arch. Neurol. 3: 1–5, 1980.

    Google Scholar 

  2. Berenstein, A., and Lasjaunias. Surgical Neuroangiography. Berlin: Springer, 1992, p. 236.

    Google Scholar 

  3. Brothers, M. F., J. C. Kaufmann, A. J. Fox, and J. P. Deveikis. n-Butyl 2-cyanoacrylate—Substitute for IBCA in interventional neuroradiology: Histopathologic and polymerization time studies. AJNR Am. J. Neuroradiol. 1: 777–786, 1989.

    Google Scholar 

  4. Canty, J. M. Jr., R. M. Judd, A. S. Brody, and F. J. Klocke. First-pass entry of nonionic contrast agent into the myocardial extravascular space. Effects on radiographic estimates of transit time and blood volume. Circulation 8: 2071–2078, 1991.

    Google Scholar 

  5. Coard, K., M. D. Silver, G. Perkins, A. J. Fox, and E. V. Vinuela. Isobutyl-2-cyanoacrylate pulmonary emboli associated with occlusive embolotherapy of cerebral arteriovenous malformations. Histopathology: 917–926, 1984.

  6. Colombo, F., F. Pozza, G. Chierego, L. Casentini, G. De Luca, and P. Francescon. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update [see comments]. Neurosurgery 3: 14–20, 1994.

    Google Scholar 

  7. Debrun, G., F. Vinuela, A. Fox, and C. G. Drake. Embolization of cerebral arteriovenous malformations with bucrylate. J. Neurosurg. 5: 615–627, 1982.

    Google Scholar 

  8. Deruty, R., I. Pelissou-Guyotat, C. Mottolese, Y. Bascoulergue, and D. Amat. The combined management of cerebral arteriovenous malformations. Experience with 100 cases and review of the literature. Acta. Neurochir. 12: 101–112, 1993.

    Google Scholar 

  9. Deveikis, J. P., H. J. Manz, A. J. Luessenhop, A. J. Caputy, A. I. Kobrine, D. Schellinger, and N. Patronas. A clinical and neuropathologic study of silk suture as an embolic agent for brain arteriovenous malformations. AJNR Am. J. Neuroradiol. 1: 263–271, 1994.

    Google Scholar 

  10. Divani, A. A. Injection of micro-droplets for flow characterization in arteriovenous malformations prior to embolization. Master thesis. Buffalo: SUNY at Buffalo, 1999, p. 128.

    Google Scholar 

  11. Ersahin, A., S. Y. Molloi, and J. W. Hicks. Absolute phasic blood flow measurement in the brain using digital subtraction angiography. Invest. Radiol. 3: 244–253, 1995.

    Google Scholar 

  12. Frank, O., and W. Alwens. —Kreislaufstudien am rongtgen-schirm. Munch. Med. 5: 950, 1910.

    Google Scholar 

  13. Goldman, M. L., M. S. Sarrafizadeh, P. K. Philip, A. M. Karmody, R. P. Leather, N. Parikh, and S. R. Powers. Bucrylate embolization of abdominal aortic aneurysms: an adjunct to nonresective therapy. AJR, Am. J. Roentgenol. 13: 1195–1200, 1980.

    Google Scholar 

  14. Gruber, A., P. R. Mazal, G. Bavinzski, M. Killer, H. Budka, and B. Richling. Repermeation of partially embolized cerebral arteriovenous malformations: a clinical, radiologic, and histologic study. AJNR Am. J. Neuroradiol. 1: 1323–1331, 1996.

    Google Scholar 

  15. Hessel, S. J., D. F. Adams, and H. L. Abrams. Complications of angiography. Radiology 13: 273–281, 1981.

    Google Scholar 

  16. Luessenhop, A. J., and W. T. Spence. Artificial embolization of cerebral arteries: Report of use in a case of arteriovenous malformation. J. Am. Med. Assoc. 17: 1153–1155, 1960.

    Google Scholar 

  17. Martin, N. A., and H. V. Vinters. Arteriovenous malformations. In: Neurovascular Surgery. New York: McGraw-Hill, 1994, pp. 875–903.

    Google Scholar 

  18. Massoud, T. F., C. Ji, G. Guglielmi, and F. Vinuela. Endovascular treatment of arteriovenous malformations with selective intranidal occlusion by detachable platinum electrodes: Technical feasibility in a swine model. AJNR Am. J. Neuro-radiol. 1: 1459–1466, 1996.

    Google Scholar 

  19. Mygind, T. Particulate radiographic contrast material for quantitative representation of blood-flow patterns. II. Theoretical considerations. Invest. Radiol.: 27–39, 1971.

  20. Mygind, T., H. Busch, and G. Salomon. Soluble contrast particles for intravascular use. First clinical experience. Invest. Radiol.: 178–185, 1969.

  21. Mygind, T., A. Oigaard, M. Sovak, and S. Dorph. Particulate radiographic contrast material for quantitative representation of blood-flow patterns. I. Experimental studies. Invest. Radiol.: 548–558, 1970.

  22. Mygind, T., M. Sovak, A. Oigaard, O. Christensen, and A. Jarlov. Soluble contrast particles for radiographic analysis of blood flow. Determination of cardiac output in dogs. Invest. Radiol.: 1–12, 1970.

  23. Nakstad, P. H., S. J. Bakke, and J. K. Hald. Embolization of intracranial arteriovenous malformations and fistulas with polyvinyl alcohol particles and platinum fibre coils. Neuroradiology 3: 348–351, 1992.

    Google Scholar 

  24. Nishi, S., W. Taki, I. Nakahara, K. Yamashita, A. Sadatoh, H. Kikuchi, H. Hondo, K. Matsumoto, H. Iwata, and Y. Shimada. Embolization of cerebral aneurysms with a liquid embolus, EVAL mixture: report of three cases. Acta. Neurochir. 13: 294–300, 1996.

    Google Scholar 

  25. Ohnishi, K., M. Saito, H. Koen, T. Nakayama, F. Nomura, and K. Okuda. Pulsed Doppler flow as a criterion of portal venous velocity: Comparison with cineangiographic measurements. Radiology 15: 495–498, 1985.

    Google Scholar 

  26. Reichle, F. A., M. Sovak, R. L. Soulen, and G. P. Rosemond. Portal vein blood flow determination in the unanesthetized human by umbilicoportal cannulation. J. Surg. Res. 1: 146–150, 1972.

    Google Scholar 

  27. Rudin, S., A. Divani, A. K. Wakhloo, and B. B. Lieber. Factors affecting the accurate determination of cerebrovascular blood flow using high speed droplet imaging. Proc. SPIE 333: 232–241, 1998.

    Google Scholar 

  28. Rudin, S., L. R. Guterman, W. E. Granger, D. R. Bednarek, and L. N. Hopkins. Application of region-of-interest imaging techniques to neurointerventional radiology. Radiology 19: 870–873, 1996.

    Google Scholar 

  29. Rudin, S., B. B. Lieber, A. K. Wakhloo, D. R. Bednarek, L. R. Guterman, and L. N. Hopkins. Quantitative flow velocity measurements in vessels, aneurysms, and arteriovenous malformations (AVMs) using droplet path tracing with a biplane pulsed fluoroscopy system. Proc. SPIE 303: 268–279, 1997.

    Google Scholar 

  30. Sovak, M., M. C. Ziskin, A. Oigaard, and T. Mygind. Lipiodol droplets in cineradiographic quantitation of pulsatile and non-pulsatile blood flow. Model experiments. Invest. Radiol.: 141–145, 1971.

  31. Spetzler, R. F., and N. A. Martin. A proposed grading system for arteriovenous malformations. J. Neurosurg. 6: 476–483, 1986.

    Google Scholar 

  32. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London, Ser. A 21: 186–203, 1953.

    Google Scholar 

  33. Taylor, G. The dispersion of the matter in turbulent flow through a pipe. Proc. R. Soc. London, Ser. A 22: 446–448, 1954.

    Google Scholar 

  34. Wakhloo, A. K., B. B. Lieber, S. Rudin, M. D. Fronckowiak, R. A. Mericle, and L. N. n. Hopkins. A novel approach to flow quantification in brain arteriovenous malformations prior to enbucrilate embolization: Use of insoluble contrast Ethiodol droplet! angiography. J. Neurosurg. 8: 395–404, 1998.

    Google Scholar 

  35. Wikholm, G., C. Lundqvist, and P. Svendsen. Embolization of cerebral arteriovenous malformations: Part I—Technique, morphology, and complications. Neurosurgery 3: 448–457, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divani, A.A., Lieber, B.B., Wakhloo, A.K. et al. Determination of Blood Flow Velocity and Transit Time in Cerebral Arteriovenous Malformation using Microdroplet Angiography. Annals of Biomedical Engineering 29, 135–144 (2001). https://doi.org/10.1114/1.1349696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1349696

Navigation