Skip to main content

Advertisement

Log in

A Physical Model Describing the Mechanism for Formation of Gas Microbubbles in Patients with Mitral Mechanical Heart Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study was aimed at developing a physical model, supported by experimental observations, to describe the formation and growth of microbubbles seen in patients with mitral mechanical heart valves (MHV). This phenomenon, often referred to as high intensity transient signals (HITS), appears as bright, intense, high-velocity and persistent echoes detected by Doppler ultrasonography at the instant of closure. The long-term clinical implications of HITS has yet to be determined. However, there are reports of a certain degree of neurological disorder in patients with mitral MHV. The numerical analysis has shown the existence of a twofold process (1) nucleation and (2) microbubble growth as a result of cavitation. While mild growth of nuclei is governed by diffusion, explosive growth of microbubbles is controlled by pressure drop on the atrial side of mitral MHV. It was demonstrated that there exist limits on both microbubble size and regurgitant velocity, above which microbubbles grow explosively, and below which growth is almost nonexistent. Therefore, prevention of excessive pressure drops induced by high closing velocities related to the dynamics of closure of mitral MHV may offer design changes in the future generations of mechanical valves. © 1999 Biomedical Engineering Society.

PAC99: 8763Df, 8710+e, 8719Uv, 8780Rb, 4755Dz, 8719La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Biancucci, B. A., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. In vitro studies of gas bubble formation by mechanical heart valves. J. Heart Valve Dis. 8:186–196, 1999.

    Google Scholar 

  2. Bluestein, D., S. Einav, and N. H. C. Hwang. A squeeze flow phenomenon at the closing of a bileaflet mechanical valve prosthesis. J. Biomech. 27:1369–1378, 1994.

    Google Scholar 

  3. Brennen, C. E. Cavitation and bubble dynamics. New York: Oxford University Press, 1995.

    Google Scholar 

  4. Byrne, J. P., D. M. Behrendt, M. M. Kirsh, and M. B. Orringer. Replacement of heart valves by prosthetic devices. Pathobiology 7:83–114, 1977.

    Google Scholar 

  5. Cape, E. C., E. G. Skoufis, A. E. Weyman, A. P. Yoganathan, and R. A. Levin. A new method for noninvasive quantification of valvular regurgitation based on conservation of momentum: in-vitro validation. Circulation 79:1343–1353, 1989.

    Google Scholar 

  6. Chahine, G. L. Bubble interactions with vortices. In: Fluid Vortices, edited by S. I. Green. Dordrecht: Kluwer Academic, 1995, pp. 783–828.

    Google Scholar 

  7. Dauzat, M., G. Deklunder, A. Aldis, M. Rabinovitch, F. Burte, and P. M. Bret. Gas bubble emboli detected by transcranial Doppler sonography in patients with prosthetic heart valves: a preliminary report. J. Ultrasound Med. 13:129–135, 1994.

    Google Scholar 

  8. Dellsperger, K. C., D. W. Wieting, D. A. Baehr, R. J. Bard, J. Brugger, and E. C. Harrison. Regurgitation of prosthetic heart valves: dependence on heart rate and cardiac output. Am. J. Cardiol. 51:321–328, 1983.

    Google Scholar 

  9. Diebold, B., A. Delouche, P. Delouche, J. P. Guglielmi, P. Dumee, and A. Herment. In-vitro flow mapping of regurgitant jets: systematic description of free jet with laser Doppler velocimetry. Circulation 94:158–169, 1996.

    Google Scholar 

  10. Emery, R. W., E. Mettler, and D. M. Nicoloff. A new cardiac prosthesis: the St. Jude Medical cardiac valve: in-vivo results. Circulation 60:48–54, 1979.

    Google Scholar 

  11. Georgiadis, D., R. W. Baumgartner, R. Karatschai, A. Lindner, and H. R. Zerkowski: Further evidence of gaseous embolic material in patients with artificial heart valves. J. Thorac. Cardiovasc. Surg. 115:808–810, 1998.

    Google Scholar 

  12. Georgiadis, D., A. Wenzel, D. Lehmann, A. Lindner, H. R. Zerkowski, S. Zierz, and M. P. Spencer. Influence of oxygen ventilation on Doppler microembolic signals in patients with artificial heart valves. Stroke 28:2189–2194, 1997.

    Google Scholar 

  13. Graf, T., H. Fischer, H. Reul, and G. Rau. Cavitation potential of mechanical heart valve prosthesis. Int. J. Artif. Organs 14:169–174, 1991.

    Google Scholar 

  14. Graf, T., H. Reul, D. Wolfgang, R. Wilmes, and G. Rau. Cavitation of mechanical heart valves under physiologic conditions. J. Heart Valve Dis. 1:131–141, 1992.

    Google Scholar 

  15. Green, S. I. Introduction to vorticity. In: Fluid Vortices, edited by S. I. Green. Dordrecht: Kluwer Academic, 1995, pp. 1–34.

    Google Scholar 

  16. Guo, G. X., C. C. Xu, and N. H. C. Hwang. Laser assessment of leaflet closing motion in prosthetic heart valves. J. Biomed. Eng. 12:477–481, 1990.

    Google Scholar 

  17. Hall, K. V., R. L. Kaster, and A. Woien. An improved pivotal disc-type prosthetic heart valve. J. Oslo City Hosp. 29:3–21, 1979.

    Google Scholar 

  18. Hwang, N. H. C., R. S. Meltzer, M. A. Moehring, J. D. Thomas, B. F. Vanderberg, and A. P. Yoganathan. Spontaneous echo contrast in patients with mechanical heart valve implants. Panel Summary-J. Am. Soc. Artif. Inter. Organs. 42:24–26, 1996.

    Google Scholar 

  19. Kafesjian, R., M. Howanec, G. D. Ward, L. Diep, L. S. Wagstaff, and R. Rhee. Cavitation damage of Pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis. 3:S2-S7, 1994.

    Google Scholar 

  20. Kingsbury, C., R. Kafesjian, G. Guo, P. Adlparvar, J. Unger, R. C. Quijano, T. Graf, H. Fisher, H. Reul, and G. Rau. Cavitation threshold with respect to dP/dt: evaluation in 29 mm bileaflet, Pyrolytic carbon heart valves. Int. J. Artif. Organs 16:515–520, 1993.

    Google Scholar 

  21. Kort, A. and I. Kronzon. Microbubble formation: in-vitro and in-vivo observation. J. Clin. Ultrasound 10:117–120, 1982.

    Google Scholar 

  22. Levy, D. J., J. S. Child, E. Rambod, M. Gharib, J. W. Sayre, S. Milo, and D. J. Sahn. Microbubble generation associated with mitral valve prostheses: evaluation by transesophageal echocardiography. Eur. J. Ultrasound (in press).

  23. Mackay, T. G., D. Geordiadis, D. G. Grossel, K. R. Lees, and D. J. Weathley. On the origin of cerebrovascular microemboli associated with prosthetic heart valves. Neurol. Res. 17:349–352, 1995.

    Google Scholar 

  24. Markus, H. Transcranial Doppler detection of circulating cerebral emboli. A review. Stroke 24:1246–1250, 1993.

    Google Scholar 

  25. Meyer, J. S., K. Muramatsu, and T. Shirai. Cerebral embolism as a cause of stroke and transient ischemic attack. Echocardiography 13:513–517, 1996.

    Google Scholar 

  26. Moehring, M. A. and J. A. Ritcey. Microembolus sizing in a blood-mimiking fluid using a novel dual-frequency pulsed Doppler. Echocardiography 13:573–577, 1996.

    Google Scholar 

  27. Plesset, M. S. and A. Prosperetti. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9:145–185, 1977.

    Google Scholar 

  28. Prosperetti, A. and A. Lezzi. Bubble dynamics in a compressible fluid. 1st-order theory. J. Fluid Mech. 168:457–478, 1986.

    Google Scholar 

  29. Rambod, E., M. Gharib, D. J. Levy, S. Milo, and S. A. Reisner. Spontaneous echocardiographic contrast (SpE): An in-vitro study of the impact of cardiac output, left ventricular dP/dt and temperature. Circulation 92:592, 1995 (abstract).

    Google Scholar 

  30. Reisner, S. A., D. Rinkevich, W. Markiewicz, Z. Adler, and S. Milo. Spontaneous echocardiographic contrast with the Carbomedics mitral valve prosthesis. Am. J. Cardiol. 70:1497–1500, 1992.

    Google Scholar 

  31. Reul, H. Cavitation induced by prosthetic heart valvesx2014;in-vitro and computational studies. Final Report, GIF Research Grant, Hannover: Technisthe Informationsbibliothek, 1999.

    Google Scholar 

  32. Ruel, J., J. Weis, K. Jung, K. Wilmes, and A. Thorn. Central nervous system lesions and cervical disc herniations in amateur divers. Lancet 345:1403–1405, 1995.

    Google Scholar 

  33. Sliwka, U., R. R. Diehl, B. Meyer, F. Schondube, and J. Noth. Transcranial Doppler ''high intensity transient signals'' in the acute phase and long-term follow-up of mechanical heart valve implantation. J. Stroke Cerebrovasc. Dis. 5:139–146, 1995.

    Google Scholar 

  34. Spencer, M. P. Detection of embolism with Doppler ultrasound: a review. Echocardiography 13:519–527, 1996.

    Google Scholar 

  35. Spencer, M. P. Doppler Microembolic signals for diagnosis of ulcerated carotid artery plaques. Echocardiography 13:551–554, 1996.

    Google Scholar 

  36. Stump, D. A., N. A. Kon, A. T. Rogers, and J. W. Hammon. Emboli and neuropsychological outcome following cardiopulmonary bypass. Echocardiography 13:555–558, 1996.

    Google Scholar 

  37. Watanabe M., and A. Prosperetti. The effect of gas diffusion on the nuclei population downstream of a cavitation zone. In: Cavitation and Gas-Liquid Flow in Machinery and Devices Proceedings of ASME FED, 1994, pp. 211–220.

  38. Young, R. F. Cavitation. London: McGraw-Hill, 1989.

    Google Scholar 

  39. Zapanta, C. M., D. R. Steinberg, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics. J. Heart Valve Dis. 7:655–667, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rambod, E., Beizaie, M., Shusser, M. et al. A Physical Model Describing the Mechanism for Formation of Gas Microbubbles in Patients with Mitral Mechanical Heart Valves. Annals of Biomedical Engineering 27, 774–792 (1999). https://doi.org/10.1114/1.231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.231

Navigation