Skip to main content
Log in

Consensus priors for multinomial and binomial ratios

  • Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Reference analysis is an objective Bayesian approach to finding non-informative prior distributions. For various models involving nuisance parameters the reference prior has been shown to be superior to the multiparameter Jeffreys prior. In this article, the performance of the reference prior is evaluated for models that are defined at the extremes of parameter ranges, in which case reference and Jeffreys priors are shown to be potentially informative. Two quantities of interest are analyzed: the ratio of two multinomial parameters and the ratio of two independent binomial parameters, where the latter is just one example of inference based on the common 2 × 2 contingency table. For these two specific examples, we show that reference and/or Jeffreys priors lead to overinformative inference in extreme data situations that would seem common in, for example, many medical contexts when interest is in rare events. It is recommended that in the context of noninformative priors and binary data with extreme observed data, practitioners adopt priors for which prior predictive distributions are uniform, as per Bayes’s original argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., and I. A. Stegun. 1964. Handbook of mathematical functions. New York, NY: Dover.

    MATH  Google Scholar 

  • Agresti, A., and Y. Min. 2005. Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 × 2 contingency tables. Biometrics 61:515–23.

    Article  MathSciNet  Google Scholar 

  • Aitchison, J., and J. Bacon-Shone. 1981. Bayesian risk ratio analysis. American Statistician 35 (4):254–57.

    MathSciNet  Google Scholar 

  • Aitkin, M., R. J. Boys, and T. Chadwick. 2005. Bayesian point null hypothesis testing via the posterior likelihood ratio. Statistics and Computing 15:217–30.

    Article  MathSciNet  Google Scholar 

  • Altham, P. M. E. 1969. Exact Bayesian analysis of a 2 × 2 contingency table, and Fisher’s “exact” significance test. Journal of the Royal Statistical Society, Series B 31 (2):261–69.

    MathSciNet  Google Scholar 

  • Angus, J. E., and R. E. Schafer. 1984. Improved onfidence statements for the binomial parameter. American Statistician 38 (3):189–91.

    MathSciNet  Google Scholar 

  • Bayes, T. R. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, London 53:370–418.

    Article  MathSciNet  Google Scholar 

  • Berger, J. O., B. Liseo, and R. L. Wolpert. 1999. Integrated likelihood methods for eliminating nuisance parameters. Statistical Science 14 (1):1–22.

    Article  MathSciNet  Google Scholar 

  • Bernardo, J. M. 1979. Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society, Series B 41:113–47 (with discussion).

    MathSciNet  MATH  Google Scholar 

  • Bernardo, J. M. 2005. Reference analysis. In Bayesian thinking: Modeling and computation, ed. D. K. Dey and C. R. Rao, 17–90. Amsterdam, The Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Bernardo, J. M., and J. M. Ramon. 1998. An introduction to Bayesian reference analysis: Inference on the ratio of multinomial parameters. Statistician 47:101–35.

    Google Scholar 

  • Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian theory. New York, NY: Wiley.

    Book  Google Scholar 

  • Berry, G., and P. Armitage. 1995. Mid-P confidence intervals: A brief review. Statistician 44 (4):417–23.

    Article  Google Scholar 

  • Box, G. E. P., and G. C. Tiao. 1973. Bayesian inference in statistical analysis. New York, NY: Wiley Classics.

    MATH  Google Scholar 

  • Brown, L. D., T. Cai, and A. DasGupta. 2001. Interval estimation for a binomial proportion. Statistical Science 16 (2):101–33 (with discussion).

    MathSciNet  MATH  Google Scholar 

  • Clopper, C. J., and E. S. Pearson. 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–16.

    Article  Google Scholar 

  • Davison, A. C. 2003. Statistical models. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Dawid, A. P., N. Stone, and J. V. Zidek. 1973. Marginalization paradoxes in Bayesian and structural inference. Journal of the Royal Statistical Society, Series B 35:189–233 (with discussion).

    MathSciNet  MATH  Google Scholar 

  • Draper, N. R., W. G. Hunter, and D. E. Tierney. 1969. Which product is better? Technometrics 11 (2):309–20.

    Article  Google Scholar 

  • Edwards, A. W. F. 1978. Commentary on the arguments of Thomas Bayes. Scandinavian Journal of Statistics 5:116–18.

    MathSciNet  MATH  Google Scholar 

  • Geisser, S. 1984. On prior distributions for binary trials. American Statistician 38 (4):244–51.

    MathSciNet  MATH  Google Scholar 

  • Geweke, J. 2005. Contemporary Bayesian econometrics and statistics. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Gottvall, K., C. Grunewald, and U. Waldenström. 2004. Safety of birth centre care: Perinatal mortality over a 10-year period. BJOG: An International Journal of Obstetrics and Gynaecology 111:71–78.

    Article  Google Scholar 

  • Gupta, R. C., R. A. Albanes, J. W. Penn, and T. J. White. 1997. Bayesian estimation of relative risk in biomedical research. Environmetrics 8:133–43.

    Article  Google Scholar 

  • Hartigan, J. A. 1983. Bayes theory. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Hashemi, L., B. Nandram, and R. Goldberg. 1997. Bayesian analysis for a single 2 × 2 table. Statistics in Medicine 16:1311–28.

    Article  Google Scholar 

  • Huzurbazar, V. S. 1976. Sufficient statistics. New York, NY: Marcel Dekker.

    MATH  Google Scholar 

  • Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London—Series A 186 (1007):453–61.

    Article  MathSciNet  Google Scholar 

  • Jeffreys, H. 1961. Theory of probability, 3rd ed., Oxford, UK: Oxford University Press.

    MATH  Google Scholar 

  • Jeffreys, H. 1980. Some general points in probability theory, In Bayesian analysis in econometrics and statistics, ed. A. Zellner, 451–54. Amsterdam, The Netherlands: North-Holland.

    Google Scholar 

  • Jovanovic, B. D., and P. S. Levy. 1997. A look at the rule of three. American Statistician 51 (2):137–39.

    Google Scholar 

  • Lindley, D. V. 1965. Introduction to probability and statistics from a bayesian viewpoint. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Louis, T. A. 1981. Confidence intervals for a binomial parameter after observing no successes. American Statistician 35 (3):154.

    Google Scholar 

  • Tebbs, J. M., R. B. Bilder, and B. K. Moser. 2001. An empirical Bayes group-testing approach to estimating small proportions. Communications in Statistics—Theory and Methods 32 (5):983–95.

    Article  MathSciNet  Google Scholar 

  • Thomas, D. G., and J. J. Gart. 1977. A table of exact confidence limits for differences and ratios of two proportions and their odds ratios. Journal of the American Statistical Association 72 (357):73–76.

    Article  Google Scholar 

  • Tuyl, F., R. Gerlach, and K. Mengersen. 2008a. A comparison of Bayes–Laplace, Jeffreys, and other priors: the case of zero events. American Statistician 62 (1):40–44.

    Article  MathSciNet  Google Scholar 

  • Tuyl, F., R. Gerlach, and K. Mengersen. 2008b. Inference for proportions in a 2 × 2 contingency table: HPD or not HPD? Biometrics 64 (4):1293–96.

    Article  MathSciNet  Google Scholar 

  • Tuyl, F., R. Gerlach, and K. Mengersen. 2009a. Posterior predictive arguments in favor of the Bayes–Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian analysis 4 (1):151–58.

    Article  MathSciNet  Google Scholar 

  • Tuyl, F., R. Gerlach, and K. Mengersen. 2009b. The rule of three, its variants and extensions. International Statistical Review 77 (2):266–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Tuyl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuyl, F., Gerlach, R. & Mengersen, K. Consensus priors for multinomial and binomial ratios. J Stat Theory Pract 10, 736–754 (2016). https://doi.org/10.1080/15598608.2016.1219684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2016.1219684

Keywords

AMS Subject Classification

Navigation