Skip to main content
Log in

Two-parameter Maxwell distribution: Properties and different methods of estimation

  • Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this article we consider the problem of estimating location and scale parameters of the Maxwell distribution from both frequentist and Bayesian points of view. Additionally, some properties of the distribution, namely, stochastic ordering, Rényi and Shannon entropies, and order statistics, are derived. Behavior of the estimators from different frequentist approaches, namely, maximum likelihood, method of moments, least square’s, and weighted least square as well as Bayes estimators of parameters, is compared with respect to bias, mean squared errors, and the coverage percentage extracted from bootstrap confidence intervals. The existence and uniqueness of the maximum likelihood estimators are also discussed. The Bayes estimators and the associated credible intervals are obtained using importance sampling technique under squared error loss function. A gamma prior is used for the scale parameter and a uniform prior for the location parameter. An example with flood-level data is used to illustrate applicability of procedures discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarset, M. V. 1987. How to identify a bathtub shaped hazard rate? IEEE Transactions on Reliability 36:106–108.

    Article  Google Scholar 

  • Adamidis, K., T. Dimitrakopoulou, and S. Loukas. 2005. On an extension of the exponential-geometric distribution. Statistics and Probabability Letters 73:259–269.

    Article  MathSciNet  Google Scholar 

  • Alkasasbeh, M. R., and M. Z. Raqab. 2009. Estimation of the generalized logistic distribution parameters: Comparative study. Statistical Methodology 6:262–279.

    Article  MathSciNet  Google Scholar 

  • Arnold, B. C., N. Balakrishnan, and H. N. Nagaraja. 1998. A first course in order statistics. New York, NY: Wiley.

    MATH  Google Scholar 

  • Barreto-Souza, W., A. L. de Morais, and G. M. Cordeiro. 2011. The Weibull-geometric distribution. Journal of Statistical Computation and Simulation 81:645–657.

    Article  MathSciNet  Google Scholar 

  • Bekker, A., and J. J. J. Roux. 2005. Reliability characteristics of the Maxwell distribution: A Bayes estimation study. Communications in Statistics—Theory and Methods 34:2169–2178.

    Article  MathSciNet  Google Scholar 

  • Chattopadhyay, S., C. A. Murthy, and S. K. Pal, 2014. Fitting truncated geometric distributions in large scale real world net works. Theoretical Computer Science 551:2238.

    Article  Google Scholar 

  • Chaturvedi, A., and U. Rani. 1998. Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution. Journal of Statistical Research 32:113–120.

    MathSciNet  Google Scholar 

  • Chen, M. H., and Q. M. Shao. 1999. Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics 8 (1): 69–92.

    MathSciNet  Google Scholar 

  • Dey, S., T. Dey, and D. Kundu. 2014. Two-parameter Rayleigh distribution: Different methods of estimation. American Journal of Mathematical and Management Sciences 33:55–74.

    Article  Google Scholar 

  • Dey, S., T. Dey, and S. S. Maiti. 2013. Bayesian inference for Maxwell distribution under conjugate prior. Model Assisted Statistics and Applications 8:193–203.

    Google Scholar 

  • Dey, S., and S. S. Maiti. 2010. Bayesian estimation of the parameter of Maxwell distribution under different loss functions. Journal of Statistical Theory and Practice 4 (2):279–287.

    Article  MathSciNet  Google Scholar 

  • Dumonceaux, R., and C. E. Antle. 1973. Discrimination between the lognormal and Weibull distribution. Technometrics 15:923–926.

    Article  Google Scholar 

  • Efron, B. 1982. The jackknife, the bootstrap, and other resampling plans. Society of Industrial and Applied Mathematics CBMS-NSF Monographs 38.

  • Feller, W. 1971. An introduction to probability theory and its applications, Vol. 2, 2nd ed. New York, NY: Wiley.

    MATH  Google Scholar 

  • Gupta, R. D., and D. Kundu. 1999. Generalized exponential distribution. Australian and New Zealand Journal of Statistics 41:173–188.

    Article  MathSciNet  Google Scholar 

  • Hartigan, J. 1964. Invariant prior distributions. Annals of Mathematical Statistics 35:836–845.

    Article  MathSciNet  Google Scholar 

  • Howlader, H. A. and A. Hossain. 1998. Bayesian prediction intervals for Maxwell parameters. Metron LVI (1–2):97–105.

    MathSciNet  MATH  Google Scholar 

  • Johnson, N., S. Kotz, and N. Balakrishnan. 1994 Continuous univariate distributions, Vol. 1, 2nd ed. New York, NY: Wiley.

    MATH  Google Scholar 

  • Krishna, H., and M. Malik. 2009. Reliability estimation in Maxwell distribution with type-II censored data. International Journal of Quality & Reliability Management 26 (2):184–195.

    Article  Google Scholar 

  • Krishna, H., and M. Malik. 2012. Reliability estimation in Maxwell distribution with progressively type-II censored data. Journal of Statistical Computation and Simulation 82 (4):623–641.

    Article  MathSciNet  Google Scholar 

  • Kumaraswamy, P. 1976. Sinepower probability density function. Journal of Hydrology 31:181–184.

    Article  Google Scholar 

  • Kumaraswamy, P. 1978. Extended sinepower probability density function. Journal of Hydrology 37:81–89.

    Article  Google Scholar 

  • Kundu, D., and M. Z. Raqab. 2005. Generalized Rayleigh distribution: Different methods of estimations. Computational Statistics and Data Analysis 49:187–200.

    Article  MathSciNet  Google Scholar 

  • Kundu, D., and B. Pradhan. 2009. Bayesian inference and life testing plans for generalized exponential distribution. Science in China, Series A: Mathematics 52:1373–1388.

    Article  MathSciNet  Google Scholar 

  • Kus, C. 2007. A new lifetime distribution. Computational Statistics and Data Analysis 51:4497–509.

    Article  MathSciNet  Google Scholar 

  • Lawless, J. F. 1982. Statistical models and methods for lifetime data. New York, NY: John Wiley & Sons.

    MATH  Google Scholar 

  • Maxwell, J. C. 1867. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London 157:49–88.

    Article  Google Scholar 

  • Podder, C. K., and M. K. Roy. 2003. Bayesian estimation of the parameter of Maxwell distribution under MLINEX loss function. Journal of Statistical Studies 23:11–16.

    MathSciNet  Google Scholar 

  • Rényi, A. 1961. On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, 547–561. Berkeley, CA: University of California Press.

    Google Scholar 

  • Ristic, M. M., and N. Balakrishnan. 2012. The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation 82 (8):1191–1206.

    Article  MathSciNet  Google Scholar 

  • Shaked, M., and J. G. Shanthikumar. 1994. Stochastic orders and their applications. Boston, MA: Academic Press.

    MATH  Google Scholar 

  • Shannon, C. E. 1951. Prediction and entropy of printed English. Bell System Technical Journal 30:50–64.

    Article  Google Scholar 

  • Swain, J. J., S. Venkataraman, and J. R. Wilson. 1988. Least squares estimation of distribution functions in Johnson’s translation system. Journal of Statistical Computation and Simulation 29:271–297.

    Article  Google Scholar 

  • Teimouri, M., S. M. Hoseini, and S. Nadarajah. 2013. Comparison of estimation methods for the Weibull distribution. Statistics 47 (1):93–109.

    Article  MathSciNet  Google Scholar 

  • Tyagi, R. K., and S. K. Bhattacharya. 1989a. Bayes estimation of the Maxwell’s velocity distribution function. Statistica XLIX (4): 563–567.

    MATH  Google Scholar 

  • Tyagi, R. K., and S. K. Bhattacharya. 1989b. A note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica 41 (137):73–79.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri S. Mulekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Dey, T., Ali, S. et al. Two-parameter Maxwell distribution: Properties and different methods of estimation. J Stat Theory Pract 10, 291–310 (2016). https://doi.org/10.1080/15598608.2015.1135090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2015.1135090

Keywords

AMS Subject Classification

Navigation