Skip to main content
Log in

Estimating Percentiles in Computer Experiments: A Comparison of Sequential-Adaptive Designs and Fixed Designs

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Computer simulators are often used when it is impossible or infeasible to observe actual systems or processes. These simulators can be very complex, requiring many hours or days for a single simulation, and thus, the number of times we may run the code is small. Running such a simulator at a few chosen input settings comprises a computer experiment. Most of the work done in this area focuses on either estimating the unknown complex input-output relationship or optimizing the output. In this article, we consider the problem of percentile estimation in a computer experiments setting and propose the use of sequential-adaptive designs to estimate percentiles, as opposed to fixed designs. For estimating the value and location of the percentile, we present design criteria that can be used to adaptively select the design sites at which to run the simulator. A comparison of results from using sequential-adaptive designs and fixed designs is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardo, M. C., R. Buck, L. Liu, W. A. Nazaret, J. Sacks, and W. J. Welch. 1992. Integrated circuit design optimization using a sequential strategy. IEEE Transa. Computer-Aided Design, 11, 361–372.

    Article  Google Scholar 

  • Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for experimenters. New York, NY: John Wiley and Sons.

    MATH  Google Scholar 

  • Chang, P. B., B. J. Williams, T. J. Santner, W. I. Notz, and D. L. Bartel. 1999. Robust optimization of total joint replacements incorporating environmental variables. J. Biomech. Eng., 121, 304–310.

    Article  Google Scholar 

  • Chang, P. B., B. J. Williams, K. S. B. Bhalla, T. W. Belknap, T. J. Santner, W. I. Notz, and D. L. Bartel. 2001. Design and analysis of robust total joint replacements: Finite element model experiments with environmental variables. J. Biomech. Eng., 123, 239–246.

    Article  Google Scholar 

  • Currin, C., T. Mitchell, M. Morris, and D. Ylvisaker. 1991. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments, J. Am. Stat. Assoc., 86, 953–963.

    Article  MathSciNet  Google Scholar 

  • M. E. Johnson, L. M. Moore, and D. Ylvisaker. 1990. Minimax and maximin distance designs, J. Stat. Plann. Inference, 26, 131–148.

    Article  MathSciNet  Google Scholar 

  • D. R. Jones, M. Schonlau, and W. J. Welch. 1998. Efficient global optimization of expensive black-box functions, J. Global Optimization, 13, 455–492.

    Article  MathSciNet  Google Scholar 

  • Kaufman, C. G., D. Bingham, S. Habib, K. Heitman, and J. A. Frieman. 2011. Efficient emulators of computer experiments using compactly supported correlation functions, with an application to cosmology. Ann. Appl. Stat., 8, 2470–2492.

    Article  MathSciNet  Google Scholar 

  • Loeppky, J. L., J. Sacks, and W. J. Welch. 2009. Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51, 366–376.

    Article  MathSciNet  Google Scholar 

  • McKay, M. D., R. J. Beckman, and W. J. Conover. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    MathSciNet  MATH  Google Scholar 

  • Morris, M. D., and T. J. Mitchell. 1995. Exploratory designs for computer experiments. J. Stat. Plan. Inference, 43, 38–402.

    Article  Google Scholar 

  • Oakley, J. 2004. Estimating percentiles of uncertain computer code outputs. Appl. Stat., 53, 83–93.

    MathSciNet  MATH  Google Scholar 

  • Ranjan, P., D. Bingham, and G. Michailidis. 2008. Sequential experiment design for contour estimation from complex computer codes. Technometrics, 50, 527–541.

    Article  MathSciNet  Google Scholar 

  • Roy, S. 2008. Sequential-adaptive design of computer experiments for the estimation of percentiles. PhD thesis, Department of Statistics, Ohio State University, Columbus, OH.

    Google Scholar 

  • Sacks, J., S. B. Schiller, and W. J. Welch. 1989. Designs for computer experiments, Technometrics, 31, 41–47.

    Article  MathSciNet  Google Scholar 

  • Santner, T. J., B. J. Williams, and W. I. Notz. 2003. The design and analysis of computer experiments. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Schonlau, M. 1997. Computer experiments and global optimization. PhD thesis, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Schonlau, M., W. J. Welch, and D. R. Jones. 1998. Global versus local search in constrained optimization of computer models. N. Dev. Appl. Exp. Design, IMS Lecture Notes Monogr. Ser., 34, 11–25.

    MathSciNet  Google Scholar 

  • Welch, W. J., R. J. Buck, J. Sacks, H. P. Wynn, T. B. Mitchell, and M. D. Morris. 1992. Screening, predicting, and computer experiments. Technometrics, 34, 15–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. Notz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Notz, W.I. Estimating Percentiles in Computer Experiments: A Comparison of Sequential-Adaptive Designs and Fixed Designs. J Stat Theory Pract 8, 12–29 (2014). https://doi.org/10.1080/15598608.2014.840491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.840491

AMS Subject Classifications

Keywords

Navigation