Skip to main content
Log in

Bayesian Multiple Imputation for Assay Data Subject to Measurement Error

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Existing methods for the analysis of data involving assay data subject to measurement error are deficient. In particular, classical calibration methods have been shown to yield invalid inferences unless the measurement error is small. Regression calibration, a form of conditional mean imputation, has better properties, but is not well suited to adjusting for heteroscedastic measurement error. Bayesian multiple imputation is less common for measurement error problems than for missing data, but we argue that it represents an attractive option for measurement error, providing superior inferences to existing methods and a convenient way of adjusting for measurement error using simple complete-data methods and multiple imputation combining rules. It also provides a convenient approach to limit of quantification issues, another area where current approaches are in our view deficient. We review some recent work that develops multiple imputation methods for assay data, focusing particularly on three key aspects: internal versus external calibration designs, the role of the nondifferential measurement error assumption in these designs, and heteroscedastic measurement error. Future research topics are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buonaccorsi, J. P. 2010. Measurement error: Models, methods and applications. Boca Raton, FL, Chapman and Hall/CRC.

    Book  Google Scholar 

  • Carroll, R. J., K. Roeder, and L. Wasserman. 1999. Flexible parametric measurement error models. Biometrics, 55, 44–54.

    Article  Google Scholar 

  • Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. 2006. Measurement error in nonlinear models: A modern perspective, 2nd ed. Boca Raton, Chapman and Hall/CRC.

    Book  Google Scholar 

  • Carroll, R. J., and L. A. Stefanski. 1990. Approximate quasi-likelihood estimation in problems with surrogate predictors. J. Am. Stat. Ass., 85(411), 652–663.

    Article  Google Scholar 

  • Chu, H., L. Nie, and T. W. Kensler. 2008. A Bayesian approach estimating treatment effects on biomarkers containing zeros with detection limits. Stat. Med., 27, 2497–2508.

    Article  MathSciNet  Google Scholar 

  • Cole, S. R., H. Chu, and S. Greenland. 2006. Multiple-imputation for measurement-error correction. Int. J. Epidemiol., 35, 1074–1081.

    Article  Google Scholar 

  • Cooper, G. S., D. A. Savitz, R. Millikan, and T. Chiu Kit. 2002. Organochlorine exposure and age at natural menopause. Epidemiology, 13(1), 729–1733.

    Article  Google Scholar 

  • Currie, L. A., 1968. Limits for qualitative detection and quantitative determination—Application to radiochemistry. Anal. Chem., 40, 586–592.

    Article  Google Scholar 

  • Delaigle, A., and A. Meister. 2008. Density estimation with heteroscedastic error. Bernoulli, 14, 562–579.

    Article  MathSciNet  Google Scholar 

  • Freedman, L. S., D. Midthune, R. J. Carroll, and V. Kipnis. 2008. A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression. Stat. Med., 27, 5195–5216.

    Article  MathSciNet  Google Scholar 

  • Fuller, W. A. 1987. Measurement error models. New York, NY, Wiley.

    Book  Google Scholar 

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian data analysis, 2nd ed. Boca Raton, FL, Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Guo, Y., O. Harel, and R. J. A. Little. 2010. How well quantified is the limit of quantification? Epidemiology, 21, S10–S16.

    Article  Google Scholar 

  • Guo, Y., and R. J. A. Little, 2011. Regression analysis with covariates that have heteroscedastic measurement error. Stat. Med., 30, 2278–2294.

    Article  MathSciNet  Google Scholar 

  • Guo, Y., R. J. A. Little, and D. McConnell. 2012. On using summary statistics from an external calibration sample to correct for covariate measurement error. Epidemiology, 23(1), 165–174.

    Article  Google Scholar 

  • He, Y., and A. M. Zaslavsky. 2009. Combining information from cancer registry and medical records data to improve analyses of adjuvant cancer therapies. Biometrics, 65, 946–952.

    Article  MathSciNet  Google Scholar 

  • Helsel, D. R. 2004. Nondetects and data analysis: Statistics for censored environmental data. New York, NY, Wiley

    MATH  Google Scholar 

  • Higgins, K. M., M. Davidian, G. Chew, and H. Burge. 1998. The effect of serial dilution error on calibration inference in immunoassay. Biometrics, 54, 19–32.

    Article  Google Scholar 

  • Hossian, S., and P. Gustafson. 2009. Bayesian adjustment for covariate measurement errors: a flexible parametric approach. Stat. Med., 28, 1580–1600.

    Article  MathSciNet  Google Scholar 

  • Little, R. J. A., and D. B. Rubin. 2002. Statistical analysis with missing data, 2nd ed. New York, NY, Wiley.

    Book  Google Scholar 

  • May, R. C., J. G. Ibrahim, and H. Chu. 2011. Maximum likelihood estimation in generalized linear models with multiple covariates subject to dection limits. Stat. Med., 30, 2551–2561.

    Article  MathSciNet  Google Scholar 

  • Messer, K., and L. Natarajan. 2008. Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment. Stat. Med., 27, 6332–6350.

    Article  MathSciNet  Google Scholar 

  • Raghunathan, T., P. Solenberger, and J. van Hoewyk. 2011. IVEware: Imputation and variance estimation software: Installation instructions and user guide. Survey Research Center, Institute of Social Research, University of Michigan, Ann Arbor.

    Google Scholar 

  • Raghunathan, T. E. 2006. Combining information from multiple surveys for assessing health disparities. Allgemeines Statistisches Archiv., 90(4), 515–526.

    Article  MathSciNet  Google Scholar 

  • Reiter, J.R. 2008. Multiple imputation when records used for imputation are not used or disseminated for analysis. Biometrika, 95(4), 933–946.

    Article  MathSciNet  Google Scholar 

  • Richardson, D. B., and A. Ciampi. 2003. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol., 157, 355–363.

    Article  Google Scholar 

  • Richardson, S., W. R. Gilks. 1993. Conditional independence models for epidemiological studies with covariate measurement error. Stat. Med., 12, 1703–1722.

    Article  Google Scholar 

  • Richardson, S., L. Leblond, I. Jaussent, and P. J. Green. 2002. Mixture models in measurement error problems, with reference to epidemiological studies. J. R. Stat. Soc. Ser. A Stat. Society, 165, 549–566.

    Article  MathSciNet  Google Scholar 

  • Robins J. M., and N. Wang. 2000. Inference in imputation estimators. Biometrika, 87, 113–124.

    Article  MathSciNet  Google Scholar 

  • Rosner B., D. Spiegelman, and W. C. Willett. 1990. Correction of logistic regression relative risk estimates and confidence intervals for measurement error: The case of multiple covariates measured with error. Am. J. Epidemiol., 132, 734–745.

    Article  Google Scholar 

  • Rubin, D. B. 1987. Multiple imputation for nonresponse in surveys. New York, NY, Wiley.

    Book  Google Scholar 

  • Sadler, W. A., and M. H. Smith. 1985. Estimation of the response-error relationship in immunoassay. Clinical Chemistry, 31, 1802–1805.

    Google Scholar 

  • SAS 2011. Proc MI and Proc MIANALYZE in statistical analysis software, Version 9.3. Cary, NC, SAS Institute, Inc.

    Google Scholar 

  • Singh, A., and I. Nocerino. 2002. Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemometrics Intelligent Lab. Systems, 60, 69–86.

    Article  Google Scholar 

  • Spiegelman, D. 1990. Validation Studies. In Colton, T. and Armitage, P., eds., Encyclopedia of Biostatistics, 4694–1700. Sussex, UK, Wiley.

    Google Scholar 

  • Spiegelman, D., R. J. Carroll, and V. Kipnis. 2001. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument. Stat. Med., 20, 139–160.

    Article  Google Scholar 

  • Spiegelman, D., R. Logan, and D. Grove. 2011. Regression calibration with heteroscedastic error variance. Lnte. J. Biostat., 7, 1–34.

    MathSciNet  Google Scholar 

  • Stata. 2011. Stata: Data analysis and statistics software, Version 12. College Station, TX, StataCorp LP.

    Google Scholar 

  • Van Buuren, S., and K. Groothuis-Oudshoorn. 2011. MICE: Multivariate imputation by chained equations. R package, version 2.9. http://CRAN.R-project.org/package=mice.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick J. Little.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Little, R.J. Bayesian Multiple Imputation for Assay Data Subject to Measurement Error. J Stat Theory Pract 7, 219–232 (2013). https://doi.org/10.1080/15598608.2013.772018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2013.772018

AMS Subject Classification

Keywords

Navigation