Skip to main content
Log in

Rorα, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: From development to ageing

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

RORα (Retinoid-relatedOrphanReceptor) is a transcription factor belonging to the superfamily of nuclear receptors. The spontaneousstaggerer (sg) mutation, which consists of a deletion in theRora gene, has been shown to cause the loss of function of the RORα protein. The total loss of RORα expression leads to cerebellar developmental defects, particularly to a dramatic decreased survival of Purkinje cells and an early block in the differentiation process. This review focuses on recent studies which position RORα as a pivotal factor controlling Purkinje cell survival and differentiation, from development to ageing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sidman RL, Lane PV, Dickie MM. staggerer, a new mutation in the mouse affecting the cerebellum. Science. 1962;136: 610–12.

    Article  Google Scholar 

  2. Herrup K. Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res. 1983;313: 267–74.

    PubMed  CAS  Google Scholar 

  3. NRNC. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999;97:161–3.

    Article  Google Scholar 

  4. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.

    Article  PubMed  CAS  Google Scholar 

  5. Giguere V. Orphan nuclear receptors: from gene to function. EndocrRev. 1999;20:689–725.

    Article  CAS  Google Scholar 

  6. Atkins GB, Hu X, Guenther MG, Rachez C, Freedman LP, Lazar MA. Coactivators for the orphan nuclear receptor RORalpha. Mol Endocrinol. 1999;13:1550–7.

    Google Scholar 

  7. Harris JM, Lau P, Chen SL, Muscat GE. Characterization of the retinoid orphan-related receptor-alpha coactivator binding interface: a structural basis for ligand-independent transcription. Mol Endocrinol. 2002;16:998–1012.

    Article  PubMed  CAS  Google Scholar 

  8. Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, et al. X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure (Camb). 2002;10:1697–707.

    Article  CAS  Google Scholar 

  9. Giguere V, McBroom LD, Flock G. Determinants of target gene specificity for ROR alpha 1: monomeric DNA binding by an orphan nuclear receptor. Mol Cell Biol. 1995;15: 2517–26.

    PubMed  CAS  Google Scholar 

  10. McBroom LD, Flock G, Giguere V. The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions. Mol Cell Biol. 1995;15:796–808.

    PubMed  CAS  Google Scholar 

  11. Zhao Q, Khorasanizadeh S, Miyoshi Y, Lazar MA, Rastinejad F. Structural elements of an orphan nuclear receptor-DNA complex. Mol Cell. 1998;1:849–61.

    Article  PubMed  CAS  Google Scholar 

  12. Harding HP, Atkins GB, Jaffe AB, Seo WJ, Lazar MA. Transcriptional activation and repression by RORalpha, an orphan nuclear receptor required for cerebellar development. Mol Endocrinol. 1997;11:1737–46.

    Article  PubMed  CAS  Google Scholar 

  13. Moraitis AN, Giguere V. Transition from monomeric to homodimeric DNA binding by nuclear receptors: identification of RevErbAalpha determinants required for RORalpha homodimer complex formation. Mol Endocrinol. 1999;13: 431–9.

    Article  PubMed  CAS  Google Scholar 

  14. Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 1994;8: 538–53.

    Article  PubMed  CAS  Google Scholar 

  15. Becker-Andre M, Andre E, DeLamarter JF. Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. Biochem Biophys Res Commun. 1993;194:1371–9.

    Article  PubMed  CAS  Google Scholar 

  16. Carlberg C, Hooft van Huijsduijnen R, Staple JK, DeLamarter JF, Becker-Andre M. RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers. Mol Endocrinol. 1994;8: 757–70.

    Article  PubMed  CAS  Google Scholar 

  17. Gold DA, Baek SH, Schork NJ, Rose DW, Larsen DD, Sachs BD, et al. RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calciumdependent pathways. Neuron. 2003;40:1119–31.

    Article  PubMed  CAS  Google Scholar 

  18. Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, et al. staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci USA. 1998;95:3960–5.

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature. 1996;379(6567):736–9.

    Article  PubMed  CAS  Google Scholar 

  20. Besnard S, Heymes C, Merval R, Rodriguez M, Galizzi JP, Boutin JA, et al. Expression and regulation of the nuclear receptor RORalpha in human vascular cells. FEBS Lett. 2002;511:36–40.

    Article  PubMed  CAS  Google Scholar 

  21. Matsui T, Sashihara S, Oh Y, Waxman SG. An orphan nuclear receptor, mROR alpha, and its spatial expression in adult mouse brain. Brain Res Mol Brain Res. 1995;33: 217–26.

    Article  PubMed  CAS  Google Scholar 

  22. Ino H. Immunohistochemical characterization of the orphan nuclear receptor ROR alpha in the mouse nervous system. J Histochem Cytochem. 2004;52:311–23.

    Article  PubMed  CAS  Google Scholar 

  23. Matysiak-Scholze U, Nehls M. The structural integrity of ROR alpha isoforms is mutated in staggerer mice: cerebellar coexpression of ROR alpha1 and ROR alpha4. Genomics. 1997;43:78–84.

    Article  PubMed  CAS  Google Scholar 

  24. Dussault I, Fawcett D, Matthyssen A, Bader JA, Giguere V. Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech Dev. 1998;70: 147–53.

    Article  PubMed  CAS  Google Scholar 

  25. Doulazmi M, Frederic F, Capone F, Becker-Andre M, Delhaye-Bouchaud N, Mariani J. A comparative study of Purkinje cells in two RORalpha gene mutant mice: staggerer and RORalpha(2/2). Brain Res Dev Brain Res. 2001;127: 165–74.

    Article  PubMed  CAS  Google Scholar 

  26. Guillaumond F, Dardente H, Giguere V, Cermakian N. Differential control of Bmal1 circadian transcription by REVERB and ROR nuclear receptors. J Biol Rhythms. 2005;20: 391–403.

    Article  PubMed  CAS  Google Scholar 

  27. Akashi M, Takumi T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol. 2005; 12:441–8.

    Article  PubMed  CAS  Google Scholar 

  28. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43:527–37.

    Article  PubMed  CAS  Google Scholar 

  29. Emery P, Reppert SM. A rhythmic Ror. Neuron. 2004;43: 443–6.

    Article  PubMed  CAS  Google Scholar 

  30. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187–92.

    Article  PubMed  CAS  Google Scholar 

  31. Jarvis CI, Staels B, Brugg B, Lemaigre-Dubreuil Y, Tedgui A, Mariani J. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor’s role beyond the cerebellum. Mol Cell Endocrinol. 2002; 186:1–5.

    Article  PubMed  CAS  Google Scholar 

  32. Boukhtouche F, Mariani J, Tedgui A. The ‘CholesteROR’ protective pathway in the vascular system. Arterioscler Thromb Vasc Biol. 2004;24:637–43.

    Article  PubMed  CAS  Google Scholar 

  33. Landis DM, Sidman RL. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol. 1978;179:831–63.

    Article  PubMed  CAS  Google Scholar 

  34. Vogel MW, Sinclair M, Qiu D, Fan H. Purkinje cell fate in staggerer mutants: agenesis versus cell death. J Neurobiol. 2000;42:323–37.

    Article  PubMed  CAS  Google Scholar 

  35. Monnier Z, Bahjaoui-Bouhaddi M, Bride J, Bride M, Math F, Propper A. Structural and immunohistological modifications in olfactory bulb of the staggerer mutant mouse. Biol Cell. 1999;91:29–44.

    Article  PubMed  CAS  Google Scholar 

  36. Herrup K, Mullen RJ. Staggerer chimeras: intrinsic nature of Purkinje cell defects and implications for normal cerebellar development. Brain Res. 1979;178:443–57.

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa S, Watanabe M, Inoue Y. Prominent expression of nuclear hormone receptor ROR alpha in Purkinje cells from early development. Neurosci Res. 1997;28:177–84.

    Article  PubMed  CAS  Google Scholar 

  38. Sonmez E, Herrup K. Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Brain Res. 1984;314:271–83.

    PubMed  CAS  Google Scholar 

  39. Dahmane N, Ruiz-i-Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.

    PubMed  Google Scholar 

  40. Shojaeian H, Delhaye-Bouchaud N, Mariani J. Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Brain Res. 1985;353:141–6.

    PubMed  CAS  Google Scholar 

  41. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet. 1985;2:51–66.

    Article  PubMed  CAS  Google Scholar 

  42. Zanjani HS, Mariani J, Herrup K. Cell loss in the inferior olive of the staggerer mutant mouse is an indirect effect of the gene. J Neurogenet. 1990;6:229–41.

    Article  PubMed  CAS  Google Scholar 

  43. Kopmels B, Mariani J, Delhaye-Bouchaud N, Audibert F, Fradelizi D, Wollman EE. Evidence for a hyperexcitability state of staggerer mutant mice macrophages. J Neurochem. 1992;58:192–9.

    Article  PubMed  CAS  Google Scholar 

  44. Stapleton CM, Jaradat M, Dixon D, Kang HS, Kim SC, Liao G, et al. Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2005; 289:L144–52.

    Article  PubMed  CAS  Google Scholar 

  45. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, et al. The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep. 2001;2:42–8.

    Article  PubMed  CAS  Google Scholar 

  46. Vernet-der Garabedian B, Lemaigre-Dubreuil Y, Delhaye-Bouchaud N, Mariani J. Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res Mol Brain Res. 1998;62: 224–7.

    Article  Google Scholar 

  47. Zanjani HS, Mariani J, Delhaye-Bouchaud N, Herrup K. Neuronal cell loss in heterozygous staggerer mutant mice: a model for genetic contributions to the aging process. Brain Res Dev Brain Res. 1992;67:153–60.

    Article  PubMed  CAS  Google Scholar 

  48. Hadj-Sahraoui N, Frederic F, Zanjani H, Herrup K, Delhaye-Bouchaud N, Mariani J. Purkinje cell loss in heterozygous staggerer mutant mice during aging. Brain Res Dev Brain Res. 1997;98:1–8.

    Article  PubMed  CAS  Google Scholar 

  49. Doulazmi M, Frederic F, Lemaigre-Dubreuil Y, Hadj-Sahraoui N, Delhaye-Bouchaud N, Mariani J. Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J Comp Neurol. 1999;411:267–73.

    Article  PubMed  CAS  Google Scholar 

  50. Shojaeian H, Delhaye-Bouchaud N, Mariani J. Decreased number of cells in the inferior olivary nucleus of the adult mouse (+/sg) heterozygous for the staggerer gene. Neuroscience. 1987;22:91–7.

    Article  PubMed  CAS  Google Scholar 

  51. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–86.

    Article  PubMed  CAS  Google Scholar 

  52. Joseph JA, Denisova NA, Bielinski D, Fisher DR, Shukitt-Hale B. Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention. Mech Ageing Dev. 2000;116:141–53.

    Article  PubMed  CAS  Google Scholar 

  53. Higami Y, Shimokawa I. Apoptosis in the aging process. Cell Tissue Res. 2000;301:125–32.

    Article  PubMed  CAS  Google Scholar 

  54. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 2002;419 (6905):367–74.

    Article  PubMed  CAS  Google Scholar 

  55. Boukhtouche F, Vodjdani G, Jarvis CI, Bakouche J, Staels B, Mallet J, et al. Human retinoic acid receptor-related orphan receptor alpha 1 overexpression protects neurones against oxidative stress-induced apoptosis. J Neurochem. 2006;96: 1778–89.

    Article  PubMed  CAS  Google Scholar 

  56. Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J Comp Neurol. 1996;374:332–41.

    Article  PubMed  CAS  Google Scholar 

  57. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–47.

    Article  PubMed  CAS  Google Scholar 

  58. Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, et al. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci. 2004;24:1486–96.

    Article  PubMed  CAS  Google Scholar 

  59. Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.

    PubMed  CAS  Google Scholar 

  60. Ghoumari AM, Wehrle R, Bernard O, Sotelo C, Dusart I. Implication of Bcl-2 and Caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. Eur J Neurosci. 2000;12:2935–49.

    Article  PubMed  CAS  Google Scholar 

  61. Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H. Survival factor-insensitive generation of reactive oxygen species induced by serum deprivation in neuronal cells. Brain Res. 1996;733:9–14.

    Article  PubMed  CAS  Google Scholar 

  62. Chauvet C, Bois-Joyeux B, Berra E, Pouyssegur J, Danan JL. The gene encoding human retinoic acid-receptor-related orphan receptor alpha is a target for hypoxia-inducible factor 1. Biochem J. 2004;384(Pt 1):79–85.

    Article  PubMed  CAS  Google Scholar 

  63. Zhu Y, McAvoy S, Kuhn R, Smith DI. RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene. 2006; Epub ahead of print.

  64. Gold DA, Gent PM, Hamilton BA. RORalpha in genetic control of cerebellum development: 50 staggering years. Brain Res. 2006; Epub ahead of print.

  65. Kim SJ, Kim TS, Hong S, Rhim H, Kim IY, Kang S. Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1 -expressing cells. Neurosci Lett. 2003;348:21–4.

    Article  PubMed  CAS  Google Scholar 

  66. Strom AL, Forsgren L, Holmberg M. A role for both wildtype and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis. 2005;20:646–55.

    Article  PubMed  CAS  Google Scholar 

  67. Bradley P, Berry M. The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of Weaver and Staggerer mice. Brain Res. 1978;142: 135–41.

    Article  PubMed  CAS  Google Scholar 

  68. Sotelo C. Purkinje cell ontogeny: formation and maintenance of spines. Prog Brain Res. 1978;48:149–70.

    Article  PubMed  CAS  Google Scholar 

  69. Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol. 1990;153:225–49.

    PubMed  CAS  Google Scholar 

  70. Sotelo C. Permanence and fate of paramembranous synaptic specializations in ‘mutants’ experimental animals. Brain Res. 1973;62:345–51.

    Article  PubMed  CAS  Google Scholar 

  71. Crepel F, Delhaye-Bouchaud N, Guastavino JM, Sampaio I. Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. Nature. 1980;283(5746): 483–4.

    Article  PubMed  CAS  Google Scholar 

  72. Mariani J, Changeux JP. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J Neurobiol. 1980;11:41–50.

    Article  PubMed  CAS  Google Scholar 

  73. Hatten ME, Messer A. Postnatal cerebellar cells from staggerer mutant mice express embryonic cell surface characteristic. Nature. 1978;276(5687):504–6.

    Article  PubMed  CAS  Google Scholar 

  74. Trenkner E. Postnatal cerebellar cells of staggerer mutant mice express immature components on their surface. Nature. 1979;277(5697):566–7.

    Article  PubMed  CAS  Google Scholar 

  75. Edelman GM, Chuong CM. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci USA. 1982;79:7036–40.

    Article  PubMed  CAS  Google Scholar 

  76. Messer A, Plummer-Siegard J, Eisenberg B. Staggerer mutant mouse Purkinje cells do not contain detectable calmodulin mRNA. J Neurochem. 1990;55:293–302.

    Article  PubMed  CAS  Google Scholar 

  77. Berry M, Bradley P. The growth of the dendritic trees of Purkinje cells in irradiated agranular cerebellar cortex. Brain Res. 1976;116:361–87.

    Article  PubMed  CAS  Google Scholar 

  78. Bradley P, Berry M. The effects of reduced climbing and parallel fibre input on Purkinje cell dendritic growth. Brain Res. 1976;109:133–51.

    Article  PubMed  CAS  Google Scholar 

  79. Bradley P, Berry M. Quantitative effects of climbing fibre deafferentiation on the adult Purkinje cell dendritic tree. Brain Res. 1976;112:133–40.

    Article  PubMed  CAS  Google Scholar 

  80. Baptista CA, Hatten ME, Blazeski R, Mason CA. Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron. 1994;12:243–60.

    Article  PubMed  CAS  Google Scholar 

  81. Shirley LT, Messer A. Early postnatal Purkinje cells from staggerer mice undergo aberrant development in vitro with characteristic morphologic and gene expression abnormalities. Brain Res Dev Brain Res. 2004;152:153–7.

    Article  PubMed  CAS  Google Scholar 

  82. Boukhtouche F, Janmaat S, Vodjdani G, Gautheron V, Mallet J, Dusart I, et al. Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. J Neurosci. 2006;26:1531–8.

    Article  PubMed  CAS  Google Scholar 

  83. Armengol JA, Sotelo C. Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in ‘in vitro’ slices. Brain Res Dev Brain Res. 1991;64:95–114.

    Article  PubMed  CAS  Google Scholar 

  84. Hadj-Sahraoui N, Frederic F, Zanjani H, Delhaye-Bouchaud N, Herrup K, Mariani J. Progressive atrophy of cerebellar Purkinje cell dendrites during aging of the heterozygous staggerer mouse (Rora(+/sg)). Brain Res Dev Brain Res. 2001;126:201–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Mariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukhtouche, F., Doulazmi, M., Frederic, F. et al. Rorα, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: From development to ageing. Cerebellum 5, 97–104 (2006). https://doi.org/10.1080/14734220600750184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600750184

Key words

Navigation